Module LEFO

Cours: Dimitri Petritis

2010

Notes de cours : Arnaud GIRAND

Table des matières

1	Espaces \mathcal{L}^p I Généralités	
2	Résultats de densité	5
3	Espaces L^p	7
4	Espaces $\mathcal{L}^{\infty},\ L^{\infty}$	9
5	$\begin{array}{lll} \textbf{Dualit\'e} \\ \textbf{I} & \textbf{Cas de deux r\'eels conjugu\'es} & & & \\ \textbf{II} & \textbf{Cas "}p = 1 \text{"} & & & \\ \textbf{III} & \textbf{Cas "}p = \infty \text{"} & & & \\ \textbf{IV} & \textbf{Cas de la mesure de comptage }\kappa & & & & \\ \end{array}$	11 11
6	Mesures produit I Espaces produits	13 13 14
7	Fonctions périodiques I Généralités sur les fonctions périodiques	15 15 16
8	Convolution	19
9	$\begin{array}{llllllllllllllllllllllllllllllllllll$	21 21 21 23
10	Convergence ponctuelle de $(\sigma_n(f))_n$ I Condition de Fejér	25 25 25
11	Ordre de grandeur des coefficients de Fourier	27
12	Séries de Fourier dans $L^2(\mathbb{T})$ I Motivation	29 29 29 31 31 31
13	Convergence simple	33

14	Tran	nsformée de Fourier	37	
	I	Définitions, propriétés générales	37	
	II	Régularisation	38	
	III	Identités approchées, noyau de Fejèr	39	
15 L'espace $L^2(\mathbb{R})$				
	I	Position du problème	41	
	Π	L'espace de Schwartz $\mathcal{S}(\mathbb{R})$	41	

Espaces \mathcal{L}^p

I Généralités

Lemme 1.1

Soient $a, b \in \mathbb{R}_+$ et p, q > 0 conjugués. Alors $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$.

Définition 1.1 (Norme \mathcal{L}^p)

Soit (X, X, μ) un espace mesuré et soit $f \in mX$. On pose alors, pour $p \ge 1$,

$$||f||_p = \left(\int_{\mathbb{X}} |f(x)|^p d\mu(x)\right)^{\frac{1}{p}} \in \overline{\mathbb{R}}_+$$

Proposition 1.1

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soient $f, g \in m(\mathcal{X}; \mathbb{R})$.

Soit $p \geq 1$.

Alors:

(i)
$$f = 0$$
 $\mu - p \cdot p \iff ||f||_p = 0$

(ii)
$$\forall \alpha \in \mathbb{R}, \|\alpha f\|_p = \alpha \|f\|_p$$

(iii) (a)
$$Si |f| \leq |g| \quad \mu - p.p \ alors ||f||_p \leq ||g||_p$$

(b)
$$Si |f| = |g| \quad \mu - p.p \ alors ||f||_p = ||g||_p$$

Proposition 1.2 (Inégalité de Hölder)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soient $f, g \in m(\mathcal{X}; \mathbb{R})$.

Soient p, q > 1 deux réels conjugués.

Alors:

$$||fg||_1 \le ||f||_p ||g||_q$$

 \blacksquare Plus généralement, si $\frac{1}{p}+\frac{1}{q}=\frac{1}{r},\,\|fg\|_r\leq \|f\|_p\|g\|_q.$

Proposition 1.3 (Inégalité de Minkowski)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soient $f, g \in m(\mathcal{X}; \mathbb{R})$.

Soit $p \geq 1$.

Alors:

$$||f + g||_p \le ||f||_p + ||g||_p$$

Définition 1.2 (Espaces \mathcal{L}^p)

Soit (X, \mathcal{X}, μ) un espace mesuré.

On pose $\mathcal{L}^p(\mathbb{X}, \mathcal{X}, \mu; \mathbb{R}) = \{ f \in m\mathcal{X} \mid ||f||_p < \infty \}$.

Proposition 1.4 (Propriétés des espaces \mathcal{L}^p)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $p \in [1, +\infty)$. Alors:

- (i) $(\mathcal{L}^p, +, .)$ est un \mathbb{R} -e.v
- (ii) $(\mathcal{L}^p, \|.\|_p)$ est un espace semi-normé.

(iii)
$$f \in \mathcal{L}^p \Leftrightarrow (f \in m\mathcal{X} \quad et \quad |f|^p \in \mathcal{L}^1) \Leftrightarrow (f \in m\mathcal{X} \quad et \quad |f| \in \mathcal{L}^p)$$

(iv)
$$Si \begin{cases} f \in \mathcal{L}^p \\ g \in m\mathcal{X} \\ f = g \ \mu - p.p \end{cases}$$
 alors $g \in \mathcal{L}^p$
(v) $Si \begin{cases} f \in \mathcal{L}^p \\ g \in m\mathcal{X} \\ |f| \leq |g| \ \mu - p.p \end{cases}$ alors $f \in \mathcal{L}^p$

(v)
$$Si \begin{cases} f \in \mathcal{L}^p \\ g \in m\mathcal{X} \\ |f| \leq |g| \ \mu - p.p \end{cases}$$
 alors $f \in \mathcal{L}^p$

(vi) Si
$$f, g \in \mathcal{L}^p$$
 alors $\sup(f, g), \inf(f, g), f^+, f^- \in \mathcal{L}^p$

(vii) Si
$$\begin{cases} f \in \mathcal{L}^p \\ g \in \mathcal{L}^q \\ \frac{1}{p} + \frac{1}{q} = \frac{1}{r} \end{cases}$$
 alors $fg \in \mathcal{L}^r$

Suites dans \mathcal{L}^p II

Proposition 1.5 (Théorème de convergence dominée de Lebesgue)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $p \geq 1$.

Soit $(f_n)_n$ une suite de fonctions telle que :

- (i) Les $f_n \in \mathcal{L}^p$
- (ii) $fn \longrightarrow f \quad \mu p.p$
- (iii) $\exists g \in \mathcal{L}^p, g \geq 0 \text{ tel que } \forall n \in \mathbb{N}, |f_n| \leq g \quad \mu p.p$

Alors:

- 1. $f \in \mathcal{L}^p$
- 2. $f_n \longrightarrow_{\mathcal{L}^p} f$

Corollaire 1.5.1

Soit (X, \mathcal{X}, μ) un espace mesuré. Soit $(f_n)_n$ une suite de fonctions telle que :

- (i) Les $f_n \in \mathcal{L}^1$
- (ii) $\sum f_n$ converge vers $f \mu$ -p.p
- (iii) $f \in m\mathcal{X}$
- (iv) $\exists g \in \mathcal{L}^p, g \geq 0 \text{ tel que } \forall k \in \mathbb{N}, |\sum_{n=0}^k f_n| \leq g \quad \mu p.p$

Alors:

1.
$$f \in \mathcal{L}^p$$

2.

$$\sum_{n=0}^{\infty} \bigg(\int_{\mathbb{X}} f_n d\mu \bigg) = \int_{\mathbb{X}} \bigg(\sum_{n=0}^{\infty} f_n \bigg) d\mu$$

Proposition 1.6 (Fatou)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $p \geq 1$ réel et soit $(f_n)_n \in \mathcal{L}^{p\mathbb{N}}$ convergeant μ -p.p vers $f \in m\mathcal{X}$. $Si ||f_n||_p \nrightarrow \infty$, alors $f \in \mathcal{L}^p$.

Corollaire 1.6.1

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $p \geq 1$ réel et soit $(f_n)_n \in \mathcal{L}^{p\mathbb{N}}$ convergeant en norme \mathcal{L}^p vers f. Alors $||f_n||_p \longrightarrow ||f||_p$.

La réciproque est fausse!

 $^{\square}$ Il n'y a dans le cas général aucune implication entre convergence \mathcal{L}^p et μ -p.p.

Proposition 1.7 (Fischer-Riesz)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $p \geq 1$ réel et soit $(f_n)_n \in \mathcal{L}^{p\mathbb{N}}$ une suite de Cauchy.

Alors .

- (i) $(f_n)_n$ possède une sous-suite $(f_{\varphi(n)})_n$ qui converge μ -p.p vers $f \in \mathcal{L}^p$.
- (ii) $||f_n f||_p \longrightarrow 0$.

Ainsi, $(\mathcal{L}^p, ||.||_p)$ est complet.

Corollaire 1.7.1

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $p \geq 1$ réel et soit $(f_n)_n \in \mathcal{L}^{p\mathbb{N}}$ convergeant en norme \mathcal{L}^p vers f.

Alors: $\exists \varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante tel que $f_{\varphi}(n) \longrightarrow f\mu$ -p.p

Lemme 1.2

Soient $0 \le a \le b$ et soit $p \ge 1$. Alors $(b-a)^p \le b^p - a^p$

Proposition 1.8 (Beppo-Levi)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $p \geq 1$ réel et soit $(f_n)_n \in \mathcal{L}^{p\mathbb{N}}$ monotone telle que $\sup_n \|f_n\|_p < \infty$. Alors:

1.
$$\exists g \in \mathcal{L}_p \ tel \ que \left\{ \begin{array}{l} f_n \longrightarrow g\mu - p.p \\ f_n \longrightarrow_{\mathcal{L}^p} g \end{array} \right.$$

- 2. Si $\exists f \in m\mathcal{X} \ tel \ que \ f_n \longrightarrow f\mu p.p \ alors$
 - (a) $f \in \mathcal{L}^p$
 - (b) $f_n \longrightarrow_{\mathcal{L}^p} f$

III Cas des mesures finies

Proposition 1.9

Soit (X, \mathcal{X}, μ) un espace mesuré tel que $\mu(X) < \infty$.

Soient $1 \leq p_1 \leq p_2$.

Alors:

- (i) $\exists C > 0, \ \forall f \in m\mathcal{X}, \ \|f\|_{p_1} \le C\|f\|_{p_2}$
- (ii) $\mathcal{L}^{p_2} \subset \mathcal{L}^{p_1}$

 \bigstar Aucune inclusion n'est possible si $\mu(\mathbb{X}) = \infty$!

Corollaire 1.9.1

Soit (X, \mathcal{X}, μ) un espace mesuré tel que $\mu(X) < \infty$.

Soient $1 \leq p_1 \leq p_2$ et soient $(f_n)_n \in \mathcal{L}^{p_2 \mathbb{N}}$ et $f \in \mathcal{L}^{p_2}$.

Alors:

$$\left(\|f_n - f\|_{p_2} \longrightarrow 0\right) \Longrightarrow \left(\|f_n - f\|_{p_1} \longrightarrow 0\right)$$

Proposition 1.10

Soit $(\mathbb{X}, \mathcal{X}, \mu)$ un espace mesuré tel que $\mu(\mathbb{X}) < \infty$.

Soit $p \geq 1$.

Alors convergence uniforme implique convergence \mathcal{L}^p .

Résultats de densité

Soit $(\mathbb{X}, \mathcal{X}, \mu)$ un espace mesuré. On pose \mathcal{E} l'ensemble des fonctions \mathcal{X} -étagées (i.e prenant un nombre fini de valeurs), et $\mathcal{E}^1 = \mathcal{E} \cap \mathcal{L}^1$. On rappelle que la mesure de $\{f \neq 0\}$ pour $f \in \mathcal{E}^1$ doit être finie.

Proposition 2.1

 \mathcal{E}^1 est un s-e.v dense de \mathcal{L}^p pour $p \in [1, \infty)$.

Définition 2.1 (Support, fonctions en escalier)

Soient $(X, \|.\|)$ un e.v.n et F un e.v.

Soit $f: \mathbb{X} \longrightarrow F$.

On appelle support de f l'ensemble $supp(f) = \overline{\{f \neq 0\}}$. Si supp(f) est compact, on dit que f est à support compact.

On appelle fonction en escalier toute fonction étagée à support compact, et on note $Esc(\mathbb{R})$ l'ensemble de ces fonctions.

Proposition 2.2

Soit $p \in [1, \infty)$. Sont alors denses dans $(\mathcal{L}^p, ||.||_p)$:

- 1. $Esc(\mathbb{R})$
- 2. L'ensemble $C_c(\mathbb{R})$ des fonctions continues à support compact.
- 3. L'ensemble $\mathcal{C}^p_c(\mathbb{R})$ des fonctions de classe \mathcal{C}^p à support compact, pour $1 \leq p \leq \infty$.

Espaces L^p

Dans ce chapitre, $p \in [1, \infty)$.

Définition 3.1 (Espaces L^p)

On pose $K_p = \{ \hat{f} \in \mathcal{L}^p \mid ||\hat{f}||_p = 0 \}$. On définit ensuite l'ensemble quotient $L^p = \mathcal{L}^p/K_p$.

Définition 3.2 (Norme L^p)

Soit $F \in L^p$. On pose alors $||F||_p = ||f||_p$, où $f \in F$.

 Le Cette quantité est bien définie car f=0 $\mu-\mathrm{p.p} \Longleftrightarrow \|f\|_p=0.$

Proposition 3.1

 $(L^p,\|.\|_p)$ est un espace de Banach.

Espaces \mathcal{L}^{∞} , L^{∞}

Définition 4.1 (Majorant essentiel)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $f: \mathbb{X} \longrightarrow \overline{\mathbb{R}}$ une fonction mesurable.

Un majorant essentiel de f est un $m \in \mathbb{R}$ tel que $\mu(\{f > m\}) = 0$.

On note M(f) l'ensemble des majorants essentiels de f. Notons que $M(f) \neq \emptyset$ car $\infty \in M(f)$.

Lemme 4.1

Soit (X, \mathcal{X}, μ) un espace mesuré, avec $\mu \neq 0$.

Soit $f: \mathbb{X} \longrightarrow \overline{\mathbb{R}}$ une fonction mesurable.

Alors M(f) est un intervalle fermé de la forme $[n_0, +\infty]$.

Définition 4.2 (Borne supérieure essentielle)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $f: \mathbb{X} \longrightarrow \overline{\mathbb{R}}$ une fonction mesurable.

On appelle borne supérieure essentielle de f la borne inférieure de M(f). On le note essup(f), ou $||f||_{\infty}$.

En général, on note $||f||_{\infty} = \sup |f|$. Dans le cadre de ce cours, on noteras cette quantité $||f||_{\sup}$ pour éviter les ambiguités. Considérer la fonction $\mathbb{F}_{\mathbb{Q}}$ pour se convaincre que ces deux quantités sont distinctes.

Définition 4.3 (Fonction essentiellement bornée)

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $f: \mathbb{X} \longrightarrow \overline{\mathbb{R}}$ une fonction mesurable.

f est dite $(\mu -)$ essentiellement bornée si $||f||_{\infty} < \infty$.

Définition 4.4 (Espace \mathcal{L}^{∞})

Soit (X, \mathcal{X}, μ) un espace mesuré.

On appelle \mathcal{L}^{∞} l'ensemble des fonctions essentiellement bornées sur \mathbb{X} .

Proposition 4.1

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $(f,g) \in \mathcal{L}^1 \times \mathcal{L}^\infty$.

Alors

- (i) $fg \in \mathcal{L}^1$
- (ii) $\int_{\mathbb{X}} |fg| d\mu \leq ||f||_1 ||g||_{\infty}$ [Inégalité de la moyenne]

On définit l'espace L^{∞} de façon similaire au cas $p < \infty$ comme le quotient $\mathcal{L}^{\infty}/\{\|.\|_{\infty} = 0\}$.

Lemme **4.2**

Soit (X, \mathcal{X}, μ) un espace mesuré.

Soit $f: \mathbb{X} \longrightarrow \overline{\mathbb{R}}$ une fonction mesurable.

Sont équivalents :

(i) $\exists \alpha \in \mathbb{R}_+, |f| \leq \alpha \mu - p.p$

(ii) $\exists g: \mathbb{X} \longrightarrow \mathbb{R}$ bornée telle que $f = g \ \mu - p.p$

Proposition 4.2

 $Soit(X, \mathcal{X}, \mu)$ un espace mesuré.

Alors:

- (i) $(\mathcal{L}^{\infty}, \|.\|_{\infty})$ est un e.v semi normé complet.
- (ii) $(L^{\infty}, \|.\|_{\infty})$ est un espace de Banach.

Dualité

I Cas de deux réels conjugués

Proposition 5.1

Soit (X, \mathcal{X}, μ) un espace mesuré. Soient p, q deux réels conjugués. Soit $g \in L^q$.

(i) $\varphi_g \in (L^p)'$.

(ii) $\varphi:g\mapsto \varphi_g$ est linéaire continue et $\|\varphi\|=\|g\|_q<\infty$.

Corollaire 5.1.1

L'application $\varphi: L^q \longrightarrow (L^p)'$ est une isométrie linéaire bijective.

Bilan: $L^q \cong (L^p)'$ si $p, q \in (1, \infty)$.

II Cas "p = 1"

Proposition 5.2

Soit (X, \mathcal{X}, μ) un espace mesuré. Soit $g \in L^{\infty}$.

(i) $\varphi_g \in (L^1)'$.

(ii) $\|\varphi_q\| \leq \|g\|_{\infty}$. Il y a de plus égalité si μ est σ -finie.

 \blacksquare Bilan: $L^1 \hookrightarrow (L^{\infty})'$.

III Cas " $p = \infty$ "

Proposition 5.3

Soit (X, \mathcal{X}, μ) un espace mesuré. Soit $g \in L^1$.

(i) $\varphi_g \in (L^{\infty})'$.

(ii) $\|\varphi_g\| = \|g\|_1$.

 \square Bilan: $L^{\infty} \cong (L^1)'$.

IV Cas de la mesure de comptage κ

Théorème 5.4 (Hahn-Banach)

Soit $(\mathbb{V}, \|.\|)$ un e.v.n et soit \mathbb{U} un s-e.v de \mathbb{V} . Alors pour tout $\mathcal{U} \in \mathcal{L}(\mathbb{U}, \mathbb{C})$, il existe $\mathcal{V} \in \mathcal{L}(\mathbb{V}, \mathbb{C})$ tel que $\mathcal{V}|_{\mathbb{U}} = \mathcal{U}$ et $\|\mathcal{V}\| = \|\mathcal{U}\|$.

Dans la suite de ce cours, on noteras ℓ^p l'espace $\mathcal{L}^p(\mathbb{N},\mathcal{P}(\mathbb{N}),\kappa) = L^p(\mathbb{N},\mathcal{P}(\mathbb{N}),\kappa)$, pour $p \in [1,\infty]$. Comme le seul κ -négligeable est le vide, il est immédiat que ℓ^∞ est l'ensemble des suites bornées et que $\|.\|_{\sup} = \|.\|_{\infty}$.

Proposition 5.5

 $L'application \ \Phi \ d\'efinie \ ci-apr\`es \ est \ une \ isom\'etrie \ lin\'eaire \ non \ surjective.$

Mesures produit

I Espaces produits

Définition 6.1 (Tribu Produit)

Soient (X, X) et (Y, Y) deux espaces mesurables.

On appelle tribu produit de \mathcal{X} et \mathcal{Y} la tribu $\sigma(\mathcal{X} \times \mathcal{Y})$.

 \mathcal{L} On la note $\mathcal{X} \otimes \mathcal{Y}$.

Remarquons que $A \times B = (A \times \mathbb{Y}) \cap (\mathbb{X} \times B)$ pour $A \subset \mathbb{X}$ et $B \subset \mathbb{Y}$. Dans la suite, on notera $\pi_{\mathbb{X}}$ et $\pi_{\mathbb{Y}}$ les projections canoniques dans $\mathbb{X} \times \mathbb{Y}$.

Proposition 6.1

Soient (X, X) et (Y, Y) deux espaces mesurables. Alors

- $(i) \ \pi_{\mathbb{X}} \ (resp. \ \pi_{\mathbb{Y}}) \ est \ (\mathcal{X} \otimes \mathcal{Y}, \mathcal{X}) mesurable \ (resp. \ (\mathcal{X} \otimes \mathcal{Y}, \mathcal{Y}) mesurable).$
- (ii) Si une tribu \mathcal{F} sur $\mathcal{X} \times \mathcal{Y}$ rend $\pi_{\mathbb{X}}$ et $\pi_{\mathbb{Y}}$ mesurables alors $\mathcal{X} \otimes \mathcal{Y} \subset \mathcal{F}$.

En résumé, la tribu produit est la plus petite tribu qui rend mesurable les projections canoniques.

Proposition 6.2

Soient $(\mathbb{X}, \mathcal{X})$, $(\mathbb{Y}, \mathcal{Y})$ et $(\mathbb{W}, \mathcal{W})$ des espaces mesurables. Soit $f = (f_{\mathbb{X}}, f_{\mathbb{Y}}) : \mathbb{W} \longrightarrow \mathbb{X} \times \mathbb{Y}$. Alors :

$$\begin{array}{ccc} f & est & (\mathcal{W}, \mathcal{X} \otimes \mathcal{Y}) - mesurable \\ & \iff \end{array}$$

 $f_{\mathbb{X}}$ (resp. $f_{\mathbb{Y}}$) est $(\mathcal{W}, \mathcal{X})$ -mesurable (resp. $(\mathcal{W}, \mathcal{Y})$ -mesurable)

Proposition 6.3

Soit (X, d) et (X, \hat{d}) des espaces métriques.

On munit $\mathbb{X} \times \mathbb{Y}$ de la distance $\delta : ((x,y),(x',y')) \mapsto d(x,x') + \hat{d}(y,y')$. Alors:

- (i) $\mathcal{B}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}) \subset \mathcal{B}(\mathbb{X} \times \mathbb{Y})$
- (ii) Si \mathbb{X} et \mathbb{Y} sont séparables, alors $\mathcal{B}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}) = \mathcal{B}(\mathbb{X} \times \mathbb{Y})$

Soit $C \in \mathcal{X} \otimes \mathcal{Y}$. On pose alors, pour $(x,y) \in \mathbb{X} \times \mathbb{Y}$, $C_x = \{y \in \mathbb{Y} \mid (x,y) \in C\}$ et $C_y = \{x \in \mathbb{X} \mid (x,y) \in C\}$. On peut alors montrer que $C_x \in \mathcal{Y}$ et $C_y \in \mathcal{X}$.

Proposition 6.4 (Mesure Produit)

Soient (X, X, μ) et (Y, Y, ν) deux espaces mesurés.

On suppose que μ et ν sont σ -finies.

Alors

- (i) Il existe une unique mesure σ -finie m sur $\mathcal{X} \otimes \mathcal{Y}$, appelée mesure produit vérifiant que $\forall A \in \mathcal{X}, \ \forall B \in \mathcal{Y}, \ m(A \times B) = \mu(A)\nu(B)$.
- (ii) $\forall Cin \mathcal{X} \otimes \mathcal{Y}, \ m(C) = \int_{\mathbb{X}} \nu(C_x) d\mu(x) = \int_{\mathbb{Y}} \mu(C_y) d\nu(y).$

 \triangle On la note $\mu \otimes \nu$.

II Théorèmes de Fubini

Proposition 6.5 (Fubini-Tonelli)

Soient (X, \mathcal{X}, μ) et (Y, \mathcal{Y}, ν) deux espaces mesurés.

On suppose que μ et ν sont σ -finies.

Alors, si $f \in m(\mathcal{X} \otimes \mathcal{Y}; \overline{R}_+)$:

(i)
$$\int_{\mathbb{Y}} f(.,y) d\nu(y) \in m\mathcal{X}$$
 et $\int_{\mathbb{X}} f(x,.) d\mu(x) \in m\mathcal{Y}$

(ii)

$$\int_{\mathbb{X}\times\mathbb{Y}} f(x,y) d\mu \otimes \nu(x,y) = \int_{\mathbb{X}} \left(\int_{\mathbb{Y}} f(x,y) d\nu(y) \right) d\mu(x) = \int_{\mathbb{Y}} \left(\int_{\mathbb{X}} f(x,y) d\mu(x) \right) d\nu(y)$$

Proposition 6.6 (Fubini-Lebesgue)

Soient $(\mathbb{X},\mathcal{X},\mu)$ et $(\mathbb{Y},\mathcal{Y},\nu)$ deux espaces mesurés.

On suppose que μ et ν sont σ -finies.

Alors, si $f \in \mathcal{L}^1(\mu \otimes \nu)$:

- (i) Pour μ -presque tout $x \in \mathbb{X}$, $f(x, \cdot) \in \mathcal{L}^1(\nu)$ et pour ν -presque tout $y \in \mathbb{Y}$, $f(\cdot, y) \in \mathcal{L}^1(\mu)$
- (ii) $\int_{\mathbb{Y}} f(.,y) d\nu(y) \in m\mathcal{X}$ et $\int_{\mathbb{X}} f(x,.) d\mu(x) \in m\mathcal{Y}$

(iii)

$$\int_{\mathbb{X}\times\mathbb{Y}} f(x,y) d\mu \otimes \nu(x,y) = \int_{\mathbb{X}} \left(\int_{\mathbb{Y}} f(x,y) d\nu(y) \right) d\mu(x) = \int_{\mathbb{Y}} \left(\int_{\mathbb{X}} f(x,y) d\mu(x) \right) d\nu(y)$$

Fonctions périodiques

I Généralités sur les fonctions périodiques

Définition 7.1 (Fonction périodique)

 $Une \, fonction \, f: \mathbb{R} \longrightarrow \mathbb{K} \, est \, dite \, p\'eriodique \, si \, \exists T>0 \, \, (appel\'e \, p\'eriode \, de \, f) \, tel \, que \, \forall x \in \mathbb{R}, \, \, f(x+T)=f(x).$

 $\mathcal{L}_{\mathbb{D}}$ On notera $\operatorname{Per}(T)$, ou $\operatorname{Per}(T,\mathbb{K})$ l'ensemble des fonctions T-périodiques. Cet ensemble constitue un \mathbb{K} -e.v.

Lemme 7.1

Une fonction T-périodique est totalement déterminée par sa restriction à un intervalle de la forme $[x_0, x_0 + T)$.

Par conséquent, si $f \in \text{Per}(T)$, on l'identifie à $\hat{f} : \mathbb{T} \longrightarrow \mathbb{K}$, où \mathbb{T} est le tore $\mathbb{R}/T\mathbb{Z} \cong [O, T)$.

Lemme 7.2

Soit $\tilde{f}: [0,T) \longrightarrow \mathbb{K}$. On définit $f: \mathbb{R} \longrightarrow \mathbb{K}$ par $f(x) = \tilde{f}(x+n_xT)$, où $n_x = \inf\{k \in \mathbb{Z} \mid x+kT \ge 0\}$. Alors $f \in Per(T)$.

Définition 7.2 (Groupe des périodes)

Soit $f: \mathbb{R} \longrightarrow \mathbb{K}$.

On appelle groupe des périodes de f l'ensemble $\mathcal{P}_f = \{T \in \mathbb{R} \mid \forall x \in \mathbb{R}, f(x+T) = f(x)\}.$

Remarques:

- 1. Si $\mathcal{P}_f = \{0\}$, f n'est pas périodique.
- 2. Si $\mathcal{P}_f \neq \{0\}$, f est périodique.
- 3. Si $\mathcal{P}_f = \mathbb{R}$, f est constante.
- 4. \mathcal{P}_f est un sous-groupe de $(\mathbb{R}, +)$.

Lemme 7.3

Soit $f: \mathbb{R} \longrightarrow \mathbb{K}$ une fonction périodique.

Alors, l'une des propositions suivantes est vérifiée :

- (i) \mathcal{P}_f est dense dans \mathbb{R} .
- (ii) Il existe un $T_0 > 0$, appelé période fondamentale de f, tel que $\mathcal{P}_f = T_0 \mathbb{Z}$.

Lemme 7.4

$$\begin{aligned} & \textit{Soit } f \in \textit{Per}(T), \; \textit{et soit } a > 0. \\ & \textit{Alors } g: x \mapsto f(ax) \in \textit{Per}\left(\frac{T}{a}\right). \end{aligned}$$

En conséquence, on peut se contenter de l'étude des fonctions 2π -périodiques. Ainsi, dans le reste de ce cours, on se placeras sur $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$, muni de la mesure à densité λ définie par $d\lambda(x) = \frac{dx}{2\pi}$. Ainsi, $\int_{\mathbb{T}} d\lambda = 1$.

16

II Coefficients de Fourier

Définition 7.3

Soit $\tilde{f}: \mathbb{T} \longrightarrow \mathbb{K}$.

(i) \tilde{f} est dite Lebesgue-intégrable si la fonction f 2π -périodique obtenue par périodisation de f (cf. lemme 7.2) est intégrable localement (on note $f \in L^1_{loc}(\mathbb{R})$), i.e sur tout intervalle de longueur finie. On note $\tilde{f} \in \mathcal{L}^1(\mathbb{T})$. On a alors, $\forall x_0 \in \mathbb{R}$:

$$\int_{\mathbb{T}} \tilde{f}(x) d\lambda(x) = \frac{1}{2\pi} \int_{x_0}^{x_0 + 2\pi} f(x) dx$$

(ii) On pose

$$||f||_1 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)| dx = \int_{\mathbb{T}} |\tilde{f}(x)| d\lambda(x)$$

(iii) On appelle polynôme trigonométrique sur $\mathbb T$ une fonction de la forme

$$P: t \mapsto \sum_{k=-N}^{N} c_k e^{ikt}$$

On appelle alors degré de P l'entier $\deg(P) = \max\{n \in \mathbb{N} \mid |n| \le N, |c_n| + |c_{-n}| \ne 0\}$.

La proposition suivante découle de l'égalité $(\ell \in \mathbb{Z})$

$$\frac{1}{2\pi} \int_0^{2\pi} e^{i\ell t} dt = \delta_{\ell,0}$$

Proposition 7.1

Soit P un polynôme trigonométrique. Alors,

$$\forall n \in \mathbb{N}, |n| \le \deg(P), c_n = \int_{\mathbb{T}} P(t)e^{-int}d\lambda(t)$$

Il y a donc correspondance bijective entre un polynôme trigonométrique et l'ensemble de ses coefficients.

Définition 7.4 (Série trigonométrique)

Une série trigonométrique est une série de fonctions $\sum_{(n\in\mathbb{Z})} f_n$ de la forme $f_n(t) = c_n e^{int}$.

Définition 7.5 (Coefficients de Fourier)

Soit $f \in \mathcal{L}^1(\mathbb{T})$.

On définit comme suit le n-ième coefficient de Fourier de f, pour $n \in \mathbb{Z}$:

$$c_n(f) = \widehat{f}(n) = \int_{\mathbb{T}} f(t)e^{-int}d\lambda(t)$$

On pose de plus, $\forall t \in \mathbb{T}, \forall N \in \mathbb{N}$:

$$S_N(f)(t) = \sum_{n=-N}^{N} \widehat{f}(n)e^{int}, \quad S(f)(t) = \sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{int}$$

les coefficients de Fourier sont bien définis dés que f est Lebesgue-intégrable. Par contre, contrairement à ce qu'affirmait Fourier, S(f) n'est pas toujours bien définie. De plus, on peut avoir $S(f) \neq f$.

Proposition 7.2

Soient $f, g \in L^1(\mathbb{T})$ et $n \in \mathbb{Z}$. Alors:

(i)
$$\widehat{f+g}(n) = \widehat{f}(n) + \widehat{g}(n)$$

(ii)
$$\forall a \in \mathbb{C}, \ \widehat{af}(n) = a\widehat{f}(n)$$

(iii)
$$\widehat{\overline{f}}(n) = \overline{\widehat{f}(-n)}$$

(iv) Si
$$\tau \in \mathbb{T}$$
 et $f_{\tau} : f \mapsto f(t - \tau)$ alors $\widehat{f}_{\tau}(n) = \widehat{f}(n)e^{-in\tau}$

$$(v) |\widehat{f}(n)| \le ||f||_1$$

Corollaire 7.2.1

Soit $f \in L^1(\mathbb{T})$ et soit $(f_j)_j \in L^1(\mathbb{T})^{\mathbb{N}}$ tel que $||f_j - f||_1 \to 0$ quand $j \to \infty$. Alors $(\widehat{f_j})_j$ converge uniformément vers \widehat{f} .

Preuve : Découle de
$$|\widehat{f_j}(n) - \widehat{f}(n)| = |\widehat{(f_j - f)}(n)| \le \|f_j - f\|_1$$

Proposition 7.3

Soit $f \in L^1(\mathbb{T})$ vérifiant $\widehat{f}(0) = 0$. On pose, pour $x \in \mathbb{T}$, $F(x) = \int_0^x f(t) d\lambda(t)$. Alors:

1.
$$F$$
 est continue et 2π – périodique.

2.
$$\forall n \in \mathbb{Z}, \widehat{F}(n) = \frac{1}{in}\widehat{f}(n)$$

Convolution

Proposition 8.1 (Produit de convolution)

Soient $f, g \in L^1(\mathbb{T})$. Alors:

- (i) Pour λ -presque tout $t \in \mathbb{T}$, la fonction $\tau \mapsto f(t-\tau)g(\tau)$ est intégrable sur \mathbb{T} .
- (ii) La fonction $f*g:t\mapsto \int_{\mathbb{T}}f(t-\tau)g(\tau)d\lambda(\tau)$, appelée produit de convolution (ou convolée) de f et g, vérifie :
 - (a) $f * g \in L^1(\mathbb{T})$
 - (b) $||f * g||_1 \le ||f||_1 ||g||_1$
 - (c) $\forall n \in \mathbb{Z}, \ \widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$

PREUVE : Prouvons la dernière égalité.

$$\begin{split} \widehat{f*g}(n) &= \int_{\mathbb{T}} \left(\int_{\mathbb{T}} f(t-\tau) g(\tau) e^{-int} d\lambda(t) \right) d\lambda(\tau) \\ &= \int_{\mathbb{T}} \left(\int_{\mathbb{T}} f(t-\tau) e^{-in(t-\tau)} g(\tau) e^{-in\tau} d\lambda(t) \right) d\lambda(\tau) \\ &= \int_{\mathbb{T}} g(\tau) e^{-in\tau} \left(\int_{\mathbb{T}} f(t-\tau) e^{-in(t-\tau)} d\lambda(t) \right) d\lambda(\tau) \\ &= \int_{\mathbb{T}} g(\tau) e^{-in\tau} \widehat{f}(n) d\lambda(\tau) \quad \text{par invariance de λ par translation} \\ &= \widehat{f}(n) \widehat{g}(n) \end{split}$$

Remarque : Si $f, g \in L^1(\mathbb{T})$, fg n'est pas nécessairement intégrable. Pour un contre exemple, poser $f(x) = g(x) = \frac{1}{\sqrt{x}}$.

Proposition 8.2

* est commutatif, associatif et distributif par rapport à l'addition sur $L^1(\mathbb{T})$.

Corollaire 8.2.1

 $(L^1(\mathbb{T}), +, *, .)$ muni de $||.||_1$ est une algèbre de Banach commutative.

Cette algèbre n'est pas unitaire!

Lemme 8.1

Soit $f \in L^1(\mathbb{T})$. Pour $n \in \mathbb{Z}$, on pose $e_n : t \mapsto e^{int}$ définie sur \mathbb{T} . Alors $\forall \in \mathbb{Z}$, $\forall t \in \mathbb{T}$, $e_n * f(t) = \widehat{f}(n)e^{int}$.

Corollaire 8.2.2

Soit $f \in L^1(\mathbb{T})$. Pour $N \in \mathbb{N}$ et $t \in \mathbb{T}$, on pose

$$k(t) = \sum_{n=-N}^{N} c_n e^{int}$$

Alors:

$$\forall N \in \mathbb{N}, \ \forall t \in \mathbb{T}, \ k * f(t) = \sum_{n=-N}^{N} c_n \widehat{f}(n) e^{int}$$

Identités approchées, sommabilité en norme

I Deux propriétés de $L^1(\mathbb{T})$

Proposition 9.1 (Invariance par translation)

Soit $f \in L^1(\mathbb{T})$ et soit $\tau \in \mathbb{T}$. Alors :

(i)
$$f_{\tau}: t \mapsto f(t-\tau) \in L^1(\mathbb{T})$$

(ii)
$$||f_{\tau}||_1 = ||f||_1$$

Proposition 9.2

Soit $f \in L^1(\mathbb{T})$. On définit $\varphi : \tau \mapsto f_\tau$ sur \mathbb{T} . Alors φ est continue sur \mathbb{T} .

PREUVE : Procédons par densité. Commençons donc par supposer $f \in \mathcal{C}^0(\mathbb{T})$. Alors, par théorème de Heine, f est uniformément continue sur le compact \mathbb{T} , i.e $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall s,t \in \mathbb{T}$, si $|s-t| \leq \delta$ alors $|f(s)-f(t)| \leq \varepsilon$. Soit $\tau_0 \in \mathbb{T}$. Prenons $\tau \in \mathbb{T}$ tel que $|\tau-\tau_0| \leq \delta$. On a alors : $\forall t \in \mathbb{T}$, $|(t-\tau)-(t-\tau_0)| \leq \delta$ donc $|f(t-\tau)-f(t-\tau_0)| \leq \varepsilon$. Par suite

$$\sup_{t \in \mathbb{T}} (|f(t-\tau) - f(t-\tau_0)|) = \sup_{\mathbb{T}} (|f_{\tau} - f_{\tau_0}|) \le \varepsilon$$

Ainsi,

$$\lim_{\tau \to \tau_0} \|f_{\tau} - f_{\tau_0}\|_1 = 0$$

D'où la continuité de φ .

Supposons à présent $f \in L^1(\mathbb{T})$. Par densité, $\forall \varepsilon > 0, \exists g \in \mathcal{C}^0(\mathbb{T}), \|f - g\|_1 \leq \frac{\varepsilon}{2}$. Or si $\tau, \tau_0 \in \mathbb{T}$ on a

$$||f_{\tau} - f_{\tau_0}||_1 \le ||f_{\tau} - g_{\tau}||_1 + ||g_{\tau} - g_{\tau_0}||_1 + ||g_{\tau_0} - f_{\tau_0}||_1$$
$$= ||f - g||_1 + ||g_{\tau} - g_{\tau_0}||_1 + ||g - f||_1$$

Donc

$$0 \leq \limsup \|f_{\tau} - f_{\tau_0}\|_1 \leq \varepsilon + \lim_{\tau \to \tau_0} \|g_{\tau} - g_{\tau_0}\|_1 = \varepsilon$$

D'où le résultat.

II Identités approchées

Définition 9.1 (Identité approchée)

Une identité approchée, ou noyau de sommabilité, est une suite de fonctions $(k_n)_{n\geq 0}$ de $\mathbb T$ dans $\mathbb C$ tel que :

- (i) Les k_n sont continues.
- (ii) $\forall n \geq 0, \ \int_{\mathbb{T}} k_n d\lambda = 1$

(iii)
$$\exists C > 0, \forall n \ge 0, ||k_n||_1 \le C$$

(iv)

$$\forall \delta \in (0,\pi), \lim_{n \to \infty} \int_{\delta}^{2\pi - \delta} |k_n(t)| d\lambda(t) = 0$$

Remarque: Si on suppose les k_n positives, alors $(ii) \Rightarrow (iii)$.

Lemme 9.1

Soient \mathbb{B} un espace de Banach, $\varphi: \mathbb{T} \longrightarrow \mathbb{B}$ une application continue et $(k_n)_n$ une identité approchée. Alors

$$\lim_{n \to \infty} \left\| \frac{1}{2\pi} \int_0^{2\pi} k_n(t) \varphi(t) dt - \varphi(0) \right\|_{\mathbb{B}} = 0$$

Proposition 9.3

Soit $f \in L^1(\mathbb{T})$ et soit $(k_n)_n$ une identité approchée. Alors $k_n * f \to_{L^1} f$.

Si on avait — ce qui n'est pas le cas — un véritable neutre e, on aurait e*f=f. La proposition 9.3 illustre ainsi l'appelation d' "identité approchée".

Définition 9.2 (Noyau de Fejér)

On appelle noyau de Fejér la suite de fonctions définies sur T par

$$\forall n \in \mathbb{N}, F_n(t) = \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1}\right) e^{ikt}$$

Remarque: $F_n(t) = \frac{1}{n+1} \left(\frac{\sin\left(\frac{(n+1)t}{2}\right)}{\sin\left(\frac{t}{2}\right)} \right)^2$. De plus, les F_n sont des polynômes trigonométriques.

Proposition 9.4

 $(F_n)_n$ est une identité approchée.

Notation: Si $f \in L^1(\mathbb{T})$ et $n \in \mathbb{N}$, on note $\sigma_n(f) = F_n * f$.

On a alors

$$\sigma_n(f)(t) = \sum_{k=-n}^{n} \widehat{f}(k) \left(1 - \frac{|k|}{n+1} \right) e^{ikt}$$

Proposition 9.5

L'ensemble $\mathcal{PT}(\mathbb{T})$ des polynômes trigonométriques est dense dans $L^1(\mathbb{T})$.

PREUVE : Soit $f \in L^1\mathbb{T}$. On a vu que $(\sigma_n(f))_n$ était une suite de polynôme trigonométriques. Or, d'après la proposition 9.3, comme $(F_n)_n$ est une identité approchée et que $\sigma_n(f) = F_n * f$, alors $(\sigma_n(f))_n$ converge vers f dans $L^1(\mathbb{T})$, d'où le résultat.

Proposition 9.6 (Théorème d'unicité)

Soit $f \in L^1(\mathbb{T})$ vérifiant que $\forall n \in \mathbb{Z}, \widehat{f}(n) = 0$. Alors f = 0.

PREUVE : Sous ces hypothèses, la suite $(\sigma_n(f))_n$ est nulle sur \mathbb{T} . Or $(\sigma_n(f))_n$ converge vers f dans $L^1(\mathbb{T})$, d'où le résultat.

Corollaire 9.6.1

Si $f, g \in L^1(\mathbb{T})$ sont telles que $\forall n \in \mathbb{Z}, \ \widehat{f}(n) = \widehat{g}(n), \ alors \ f = g.$

Proposition 9.7 (Riemann-Lebesgue)

Soit $f \in L^1(\mathbb{T})$. Alors:

$$\lim_{n \to \pm \infty} \widehat{f}(n) = 0$$

.

23

PREUVE : Par densité : $\forall \varepsilon > 0$, $\exists P \in \mathcal{PT}(\mathbb{T})$, $||f - P||_1 \le \varepsilon$. Or, si $|n| > \deg(P)$, alors $\widehat{P}(n) = 0$. Ainsi $|\widehat{f}(n)| = |\widehat{(f - P)}(n)| \le ||f - P||_1 \le \varepsilon$ d'où le résultat.

Définition 9.3 (Noyau de Dirichlet)

On définit le noyau de Dirichlet comme la suite de fonctions définies sur $\mathbb T$ par

$$\forall n \in \mathbb{Z}, \ D_n(t) = \sum_{k=-n}^n e^{ikt}$$

Remarques:

1.
$$D_n(t) = \left(\frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\left(\frac{t}{2}\right)}\right)$$

- 2. On a, si $f \in L^1(\mathbb{T})$, $S_n(f) = D_n * f$
- 3. $\forall n \in \mathbb{N}, \int_{\mathbb{T}} D_n d\lambda = 1$ mais $(D_n)_n$ n'est pas une identité approchée.

III Espaces de Banach homogènes

Définition 9.4 (Espace de Banach homogène)

Un espace de Banach homogène sur \mathbb{T} est un s-e.v $\mathbb{B} \subset L^1(\mathbb{T})$ muni d'une norme $\|.\|_{\mathbb{B}}$ vérifiant $\|.\|_{\mathbb{B}} \geq \|.\|_1$.

Exemples d'espaces de Banach homogènes :

- 1. $\mathcal{C}(\mathbb{T})$ muni de $||f||_{\infty} = \sup_{\mathbb{T}} |f|$.
- 2. $C^n(\mathbb{T})$ muni de $||f|| = \sum_{k=0}^n \frac{1}{k!} \sup_{\mathbb{T}} |f^{(k)}|$.
- 3. $L^p(\mathbb{T}), 1 \leq p < \infty$.

Proposition 9.8

Soient \mathbb{B} un espace de Banach homogène, $\tau, \tau_0 \in \mathbb{T}$ et $f \in \mathbb{B}$. Alors :

(i)
$$f_{\tau} \in \mathbb{B} \ et \|f_{\tau}\|_{\mathbb{B}} = \|f\|_{\mathbb{B}}$$

(ii)

$$\lim_{\tau \to \tau_0} \|f_{\tau} - f_{\tau_0}\|_{\mathbb{B}} = 0$$

Proposition 9.9

Soient \mathbb{B} un espace de Banach homogène, $(k_n)_n$ une identité approchée et $f \in \mathbb{B}$. Alors:

$$\lim_{n \to \infty} ||k_n * f - f||_{\mathbb{B}} = 0$$

Corollaire 9.9.1

Soient $\mathbb B$ un espace de Banach homogène. Alors $\mathcal{PT}(\mathbb T)$ est debse dans $\mathbb B$.

PREUVE : $\|\sigma_n(f) - f\|_{\mathbb{B}}$ converge vers 0.

Exemple: Si $f \in \mathcal{C}(\mathbb{T})$, $(\sigma_n(f))_n$ converge uniformément vers f sur \mathbb{T} .

Corollaire 9.9.2 (Théorème d'approximation de Weierstrass)

Toute fonction continue 2π -périodique est limite uniforme de polynômes trigonométriques.

Convergence ponctuelle de $(\sigma_n(f))_n$

I Condition de Fejér

Lorsque l'on étudie $(\sigma_n(f))_n$ on rencontre principalement deux difficultés :

- 1. On sait que $(\sigma_n(f))_n$ converge vers f en norme $\|.\|_1$ mais on ne sait pas si elle converge simplement vers f.
- 2. Même dans les cas où on a convergence simple, on ne peut affirmer que la limite simple de $(\sigma_n(f))_n$ est f.

Proposition 10.1 (Fejér)

Soit $f \in L^1(\mathbb{T})$ et soit $t_0 \in \mathbb{T}$.

1. Supposons que $\frac{f(t_0+h)-f(t_0-h)}{2}$ admette une limite $\check{f}(t_0) \in \mathbb{R}$ (\check{f} est appelée régularisée de Dirichlet de f) [Condition de Fejér].

$$\lim_{n \to \infty} \sigma_n(f)(t_0) = \check{f}(t_0)$$

Notons que si f est continue en t_0 , $\check{f}(t_0) = f(t_0)$.

- 2. Si I est un intervalle fermé tel que $f \in \mathbb{C}^0(I)$, alors $(\sigma_n(f))_n$ converge uniformément sur I.
- 3. Si f est minorée (resp. majorée) par un réel m (resp. M), alors $\forall n \in \mathbb{N}, \sigma_n(f)$ est minorée par m (resp. majorée par M).

PREUVE : La preuve est basée sur le fait que $(F_n)_n$ est une identité approchée positive, paire et vérifiant que :

$$\forall \delta \in (0, \pi), \lim_{n} \left(\sup_{\delta \le t \le 2\pi - \delta} F_n(t) \right) = 0$$

Corollaire 10.1.1

Si t_0 est un point de continuité de $f \in L^1(\mathbb{T})$ est que $(S_n(f))_n$ converge simplement en t_0 vers $S_{\infty}(f)$, alors $S_{\infty}(f)(t_0) = f(t_0)$, i.e $(S_n(f))_n$ converge simplement en t_0 vers f.

II Affaiblissement de la condition de Fejér

Soit $f \in L^1(\mathbb{T})$. On pose $\psi:(t,h) \mapsto \frac{f(t+h)-f(t-h)}{2}$. La condition de Fejér en $t_0 \in \mathbb{T}$ s'écrit alors :

$$\lim_{h \to 0} \psi(t_0, h) \text{ existe dans } \mathbb{R}$$
 (10.1)

On définit la condition de Fejér affaiblie (en $t_0 \in \mathbb{T}$) suivante :

$$\exists g \in L^1(\mathbb{T}), \lim_{h \to 0} \frac{1}{h} \int_0^h |\psi(t_0, \tau) - g(t_0)| d\tau = 0$$
 (10.2)

Alors:

1.
$$(10.1) \Rightarrow (10.2)$$

2. (10.2) est plus faible que (10.1)

Proposition 10.2 (Lebesgue)

Soit $f \in L^1_{loc}(\mathbb{R})$. Alors, pour λ -presque tout x,

$$\lim_{h \to 0} \frac{1}{2h} \int_{-h}^{h} |f(x+\tau) - f(x)| d\tau = 0$$

En particulier, $\frac{1}{2h} \int_{-h}^{h} f(x+\tau) d\tau$ converge vers f λ -presque partout quand $h \to 0$.

On a montré (proposition 7.3) que si f est localement intégrable, $F: x \mapsto \int_a^{a+x} f(t)dt$ est continue. La proposition 10.2 nous affire que F est dérivable λ -presque partout.

Proposition 10.3

Supposons (10.2) vérifiée en un point $t_0 \in \mathbb{T}$. Alors :

$$\lim_{n \to \infty} \sigma_n(f)(t_0) = \check{f}(t_0)$$

💆 La preuve de ce résultat est hors-programme.

Ordre de grandeur des coefficients de Fourier

Lemme 11.1

Soit $f \in L^1(\mathbb{T})$.

 $Si \sum_{(n \in \mathbb{Z})} |\widehat{f}|$ converge alors $(S_n(f))_n$ converge uniformément sur \mathbb{T} .

PREUVE : Posons, $\forall n \in \mathbb{Z}, \ u_n : t \mapsto \widehat{f}(n)e^{int}$. Alors $\sup |u_n| < |\widehat{f}(n)|$ d'où le résultat.

Il est important de noter les choses suivantes :

- 1. Il existe des fonctions L^1 dont les coefficients de Fourier convergent arbitrairement lentement vers 0.
- 2. Il existe des suites de complexes convergeant vers 0 qui ne sont coefficients de Fourier d'aucune fonction L^1 .

Proposition 11.1

 $Soit(a_n)_n \in \mathbb{R}^{\mathbb{Z}} \ telle \ que :$

- (i) $\forall n \in \mathbb{Z}, a_n \geq 0$
- (ii) $\lim_{|n|\to\infty} a_n = 0$
- (iii) $\forall n \in \mathbb{Z}, a_n = a_{-n}$
- (iv) $\forall n > 0, \ a_{n-1} + a_{n+1} 2a_n \ge 0 \ [Convexit\'e]$

Alors:

$$\exists f \in L^1(\mathbb{T}), \, \forall n \in \mathbb{Z} \, \widehat{f}(n) = a_n$$

Lemme 11.2

Soit $(a_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle que :

- (i) $\forall n \in \mathbb{N}, a_n \geq 0$
- (ii) $(a_n)_n$ décroit vers θ
- (iii) $\sum a_n$ converge

Alors $na_n \longrightarrow 0$.

PREUVE : Par l'absurde : si ce n'était pas le cas, il existerait une partie I infinie de \mathbb{N} et $\alpha > 0$ tels que $\forall n \in I, na_n \geq \alpha$. Alors $\forall n \in I$,

$$\sum_{k=\lceil \frac{n}{2} \rceil}^{n} a_k \ge (n - \lceil \frac{n}{2} \rceil + 1) a_n \ge \frac{n - \lceil \frac{n}{2} \rceil + 1}{n} \alpha$$

Le critère de Cauchy pour les séries convergentes est alors mis en défaut, d'où la contradiction recherchée.

Proposition 11.2

Soit $g \in L^1(\mathbb{T})$ vérifiant $\forall n \in \mathbb{Z}$, $\widehat{g}(|n|) = -\widehat{g}(-|n|) \ge 0$.

Alors $\sum \frac{1}{n}\widehat{g}(n)$ converge.

Corollaire 11.2.1

Soit $(b_n)_n$ est une suite de réels positifs telle que $\sum \frac{b_n}{n}$ diverge. Alors $\sum b_n \sin(nt)$ n'est pas la série de Fourier d'une fonction L^1 .

Exemple : Ainsi $\sum_{(n\geq 3)} \frac{\sin(nt)}{\ln(n)}$ ne peut pas être la série de Fourier d'une fonction L^1 .

Proposition 11.3

Soit
$$f \in L^1(\mathbb{T})$$
 k fois dérivable telle que $f^{(k)} \in L^1(\mathbb{T})$ $(k \ge 0)$.
Alors $\exists C > 0, \forall n \ne 0 |\widehat{f}(n)| \le \frac{C}{|n|^k}$

Corollaire 11.3.1

Soit $f \in L^1(\mathbb{T})$ 2 fois dérivable telle que $f'' \in L^1(\mathbb{T})$. Alors $(S_n(f))_n$ converge uniformément vers f.

Séries de Fourier dans $L^2(\mathbb{T})$

Τ Motivation

Ce chapitre est motivé par la propriété suivante de l'espace $L^2(\mathbb{T})$:

Proposition 12.1

 $L^2(\mathbb{T})$ est un espace de Hilbert de dimension infinie, muni du produit scalaire défini par :

$$\langle f|g\rangle = \int_{\mathbb{T}} \overline{f}gd\lambda$$

Comme $\lambda(\mathbb{T}) < \infty$, on a l'inclusion $L^2(\mathbb{T}) \subset L^1(\mathbb{T})$ (d'après la proposition 1.9).

Proposition 12.2

 $\ell^2(\mathbb{Z})$ est un espace de Hilbert pour le produit scalaire

$$\langle c|d\rangle = \sum_{n=-\infty}^{\infty} \overline{c_n} d_n$$

IIGénéralités sur les espaces de Hilbert

Dans ce paragraphe, on se donne un espace de Hilbert de dimension infinie \mathcal{H} , muni d'un produit scalaire $\langle .|. \rangle$. On pose $||.|| = \sqrt{\langle .|. \rangle}$.

Définition 12.1 (Familles orthogonale, orthonormée)

Soit A un ensemble.

Une famille $(e_{\alpha})_{\alpha \in A}$ de vecteurs de \mathcal{H} est dite :

- (i) orthogonale si $\forall \alpha, \beta \in A, \ \alpha \neq \beta, \ \langle e_{\alpha} | e_{\beta} \rangle = 0$
- (ii) orthonormée si $\forall \alpha, \beta \in A, \langle e_{\alpha} | e_{\beta} \rangle = \delta_{\alpha,\beta}$

Lemme 12.1 (Pythagore-Parseval)

Soit $(e_n)_{1 \leq n \leq N}$ une famille orthonormée et soit $(a_n)_n \in \mathbb{C}^{\mathbb{N}}$. Alors :

$$\|\sum_{n=1}^{N} a_n e_n\|^2 = \sum_{n=1}^{N} |a_n|^2$$

PREUVE:

$$\|\sum_{n=1}^{N} a_n e_n\|^2 = \langle \sum_{i=1}^{N} a_i e_i | \sum_{j=1}^{N} a_j e_j \rangle = \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{a_i} a_j \langle e_i | e_j \rangle = \|\sum_{n=1}^{N} a_n e_n\|^2$$

Proposition 12.3

Soient $(e_n)_{n\in\mathbb{N}}$ une f.o.n et $(a_n)_n\in\ell^2(\mathbb{N})$.

Alors $\sum a_n e_n$ converge dans \mathcal{H} .

PREUVE : \mathcal{H} est un espace de Banach donc montrons que la suite $(S_N)_N$ des sommes partielles est de Cauchy. $\forall N \geq M \geq 0$,

$$||S_N - S_M||^2 = \sum_{n=M+1}^N a_n e_n||^2 = \sum_{n=M+1}^N |a_n|^2 \le \sum_{n=M+1}^\infty |a_n|^2$$

Or ce dernier terme converge vers 0 quand $M \to \infty$ en tant que reste d'une série convergente $((a_n)_n \in \ell^2(\mathbb{N}))$ d'où le résultat.

Proposition 12.4

Soit $(e_n)_{n\in\mathbb{N}}$ une f.o.n.

Pour $f \in \mathcal{H}$, on pose $\forall n \in \mathbb{N}$, $a_n = \langle e_n | f \rangle$. Alors, $\forall N \in \mathbb{N}$:

$$0 \le \|f - \sum_{n=0}^{N} a_n e_n\|^2 = \|f\|^2 - \sum_{n=0}^{N} |a_n|^2$$

Corollaire 12.4.1 (Inégalité de Bessel)

Soit $(e_n)_{n\in I}$ une f.o.n tel que $\operatorname{card}(I) \leq \operatorname{card}(\mathbb{N})$ (i.e $I \hookrightarrow \mathbb{N}$). Pour $f \in \mathcal{H}$, on pose $\forall n \in I$, $a_n = \langle e_n | f \rangle$. Alors:

$$\sum_{n \in I} |a_n|^2 \le ||f||^2$$

Définition 12.2 (Système total)

Une f.o.n est dite totale si le seul vecteur qui lui est orthogonal est 0.

Ceci est équivalent à la densité du s-ev engendré par la famille.

Lemme 12.2

Soit $(e_n)_{n\in\mathbb{N}}$ une f.o.n. Sont alors équivalents :

- (i) $(e_n)_{n\in\mathbb{N}}$ est total
- (ii)

$$\forall f \in \mathcal{H}, \|f\|^2 = \sum_{n=0}^{\infty} |\langle e_n | f \rangle|^2$$

(iii)

$$\forall f \in \mathcal{H}, f = \sum_{n=0}^{\infty} \langle e_n | f \rangle e_n$$

PREUVE:

- $(ii) \Rightarrow (iii)$: Découle de la proposition 12.4.
- (iii) \Rightarrow (ii) : Trivial.
- (i) \Rightarrow (iii) : Soit $f \in \mathcal{H}$. Alors :

$$\sum_{n=0}^{\infty} |\langle e_n | f \rangle|^2 \le ||f||^2 < \infty$$

Donc $\sum \langle e_n | f \rangle e_n$ converge vers $g \in \mathcal{H}$. Or, $\forall n \in \mathbb{N}$, $\langle e_n | f \rangle = \langle e_n | g \rangle$ et donc $f - g \in \langle (e_n)_n \rangle^{\perp} = \{0\}$.

(ii) \Rightarrow (i): Si f est orthogonal à $(e_n)_n$, $\forall n \in \mathbb{N}$, $\langle e_n | f \rangle = 0$ donc ||f|| = 0 d'où f = 0.

Lemme 12.3 (Parseval)

Soit $(e_n)_{n\in\mathbb{N}}$ une f.o.n totale. Alors:

$$\forall f, g \in \mathcal{H}, \langle f|g \rangle = \sum_{n=0}^{\infty} \langle f|e_n \rangle \langle e_n|g \rangle$$

Définition 12.3 (Opérateur unitaire, espaces de Hilbert isomorphes)

Soient $(\mathcal{H}_1, \langle .|. \rangle_1)$ et $(\mathcal{H}_2, \langle .|. \rangle_2)$ des espaces de Hilbert. Alors :

(i) $U \in \mathcal{G}\ell(\mathcal{H}_1, \mathcal{H}_2)$ est dit unitaire si $\forall f, g \in \mathcal{H}_1, \langle U(f)|U(g)\rangle_2 = \langle f|g\rangle_1$.

31

(ii) Deux espaces de Hilbert sont dits isomorphes s'il existe un opérateur unitaire de l'un dans l'autre.

Proposition 12.5 (Projection dans un espace de Hilbert)

Soit $C \subset \mathcal{H}$ un fermé convexe non vide.

Alors: $\forall f \in \mathcal{H}, \exists ! p \in C \text{ tel que } ||f - p|| = d(f, C).$

p est appelé le projeté orthogonal de f sur C.

III L'espace $L^2(\mathbb{T})$

III.1 Généralités

Lemme 12.4

La famille $(e_n)_{n\in\mathbb{Z}}$ des fonctions définies sur \mathbb{T} par $e_n:t\mapsto e^{int}$ est totale dans $L^2(\mathbb{T})$.

PREUVE : Découle de la proposition 9.6.

Proposition 12.6

Soient $f, g \in L^2(\mathbb{T})$. Alors:

(i)

$$\langle f|g\rangle = \sum_{n=-\infty}^{\infty} \overline{\widehat{f}(n)} \widehat{g}(n)$$

En particulier,

$$||f||_2^2 = \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2$$

- (ii) $(S_n(f))_n$ converge vers f en norme $\|.\|_2$.
- (iii) $\forall (a_n)_n \in \ell^2(\mathbb{Z}) \exists ! f \in L^2(\mathbb{T}), \forall n \in \mathbb{Z} a_n = \widehat{f}(n)$

Proposition 12.7

Soit:

$$\mathcal{F}: L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$$
$$f \mapsto (\widehat{f}(n))_{n \in \mathbb{Z}}$$

Alors \mathcal{F} est unitaire, de réciproque :

$$\mathcal{F}^*: f \mapsto \sum_{n=-\infty}^{\infty} \widehat{f}(n)e_n$$

Ainsi $L^2(\mathbb{T})$ est isomorphe à $\ell^2(\mathbb{Z})$.

Proposition 12.8

Soit $n \ge 1$ et soit $E_n = \langle e_k \mid |k| \le n \rangle$.

Alors si $f \in L^2(\mathbb{T})$, le projeté orthogonal de f sur E_n est $S_n(f)$.

Remarque : Pour $j \in \mathbb{N}$ et $k \in \{0 \dots 2^{j-1}, \text{ on pose } e_{j,k} : t \mapsto 2^{\frac{j}{2}} \psi(2^j t - k), \text{ où } \psi = \mathbb{1}_{[0,\frac{1}{2})} + \mathbb{1}_{[\frac{1}{2},1)}.$ Cette famille forme une base de $L^2(\mathbb{T})$ appelée ondelettes de Haar.

III.2 Convergence en norme

Définition 12.4 (Convergence en norme sur un espace de Banach homogène)

Soit \mathbb{B} un espace de Banach homogène. On dit que \mathbb{B} admet une convergence en norme si $\forall f \in \mathbb{B}$, $\lim_n \|Sn(f) - f\|_{\mathbb{B}} = 0$

 \mathfrak{F} Dans de tels espaces, on est certain que la série de Fourier d'une fonction f converge vers f.

Proposition 12.9

Soit B un espace de Banach homogène. Alors :

B admet une une convergence en norme

$$\exists K > 0, \, \forall f \in \mathbb{B}, \, \forall n \in \mathbb{N}^*, \, \|S_n(f)\|_{\mathbb{B}} \le K \|f\|_{\mathbb{B}}$$

Remarque : Comme S_n est linéaire, cette condition est équivalente à $\exists K > 0, \forall f \in \mathbb{B}, \forall n \in \mathbb{N}^*, ||S_n|| \leq K$.

Théorème 12.10 (Banach-Steinhaus)

Soient $\mathbb X$ un espace de Banach, $\mathbb Y$ un espace normé et $\mathcal F$ une famille de fonctions continues de $\mathbb X$ dans $\mathbb Y$.

 $Supposons\ que:$

$$\forall x \in \mathbb{X}, \sup_{F \in \mathcal{F}} ||F(x)|| < \infty$$

Alors il existe une boule fermée $B \subset \mathbb{X}$ tel que :

$$\sup_{x \in B} \left(\sup_{F \in \mathcal{F}} \|F(x)\| \right) < \infty$$

Remarque : $(S_n)_n$ vérifie les hypothèses du théorème 12.10.

Proposition 12.11

Soit $n \geq 1$.

Soit \mathbb{B} un espace de Banach homogène. Alors $\forall f \in \mathbb{B}$, $|||S_n||| \leq L_n$, où L_n est le nombre de Lebesgue $L_n = ||D_n||_1$. Il y a de plus égalité si $\mathbb{B} = L^1(\mathbb{T})$.

Preuve : Si $f \in \mathbb{B}$,

$$||S_n(f)||_{\mathbb{B}} = ||D_n * f||_{\mathbb{B}}$$

$$= ||\frac{1}{2\pi} \int_0^{2\pi} |D_n(t)f(.-t)dt||_{\mathbb{B}}$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} |D_n(t)|||f(.-t)||_{\mathbb{B}} dt$$

$$= L_n ||f||_{\mathbb{B}}$$

De plus, si $f \in L^1(\mathbb{T})$, on peut montrer (exercice) que $(N \ge 1)$ $||S_n(F_N)||_1 = ||\sigma_N(S_n)||$. De plus, D_n est continue sur \mathbb{T} est $\sigma_N(D_n) \to^{L^1} D_n$ donc : $\forall \varepsilon > 0$, $\exists N_0 \ge 1$, $\forall N \ge N_0$, $||D_n||_1 - ||\sigma_N(D_n)||_1 \le \varepsilon$ et donc $||\sigma_N(D_n)||_1 \ge ||D_n||_1 - \varepsilon$ d'où le résultat.

Proposition 12.12

Au voisinage de $+\infty$, on a $L_n = \frac{4}{\pi^2} \ln(n) + O(1)$

Corollaire 12.12.1

 $L^1(\mathbb{T})$ n'admet pas de convergence en norme.

Corollaire 12.12.2

 $(\mathcal{C}(\mathbb{T}), \|.\|_{\infty})$ n'admet pas de convergence en norme.

PREUVE : De façon identique à celle détaillée dans la preuve de la proposition 12.11, on montre que $|||S_n||| = L_n$.

Proposition 12.13

Soit p > 1. Alors $L^p(\mathbb{T})$ admet une convergence en norme, i.e $\forall f \in L^p$, $S_n(f) \to^{L^p} f$.

En particulier, $L^2(\mathbb{T})$ admet une convergence en norme.

Convergence simple

Définition 13.1 (Convergence simple sur un espace de Banach homogène)

Soit $\mathbb B$ un espace de Banach homogène. On dit que $\mathbb B$ admet une convergence simple (ou ponctuelle) si

$$\forall f \in \mathbb{B}, \forall t \in \mathbb{T}, \lim_{n \to \infty} S_n(f)(t) = f(t)$$

Proposition 13.1

Il existe une fonction continue dont la série de Fourier diverge en un point.

La preuve de ce résultat est hors-programme.

Corollaire 13.1.1

On obtient que:

- (i) $C(\mathbb{T})$ n'admet pas de convergence simple.
- (ii) $L^1(\mathbb{T})$ n'admet pas de convergence simple.

Proposition 13.2

Soit $f \in L^1(\mathbb{T})$ vérifiant que $\forall n \in \mathbb{Z}, |\widehat{f}(n)| = O\left(\frac{1}{|n|}\right)$.

 $Alors(S_n(f))_n$ et $(\sigma_n(f))_n$ convergent simplement en les mêmes points et vers la même limite.

Définition 13.2 (Fonction à variation bornée)

Soient $f:[a,b] \to \mathbb{R}$, $n \ge 1$ et $\pi = (a = t_0 < t_1 < \ldots < t_n = n)$ une subdivision de [a,b].

(i) On définit la variation de f sur [a,b] selon π par :

$$v(f,\pi) = \sum_{k=0}^{n-1} |f(t_{i+1}) - f(t_i)| \in [0,\infty)$$

(ii) Soit $\Pi_{[a,b]}$ l'ensemble des subdivisions finies de [a,b]. On définit la variation de f sur [a,b] par :

$$V(f,[a,b]) = \sup_{\pi \in \Pi_{[a,b]}} v(f,\pi) \in [0,\infty]$$

(iii) Si $V(f, [a, b]) < \infty$, f est dite à variation bornée sur [a, b].

 \triangle On note VB[a,b] l'ensemble des fonctions à variation bornée sur [a,b].

Remarque:

- 1. Si f est monotone, f est à variation bornée.
- 2. VB[a,b] est un \mathbb{R} -e.v.

Lemme 13.1

Soit $f \in VB[a,b]$. Alors V(f,[a,.]) et V(f,[a,.]) - f sont croissantes sur [a,b].

PREUVE:

– Soient $a \leq x \leq y \leq b$ et $\pi = (t_i)_i \in \Pi_{[a,b]}$. Si $x \notin \pi$, on pose $\pi_1 = \pi' \cup \pi''$, où $\pi' \in \Pi_{[a,x]}, \, \pi'' \in \Pi_{[x,b]}.$ $Alors v(f, \pi) \le u(f, \pi_1) = v(f, \pi') + v(f, \pi'') \operatorname{car} |f(t_{i+1}) - f(t_i)| \le |f(t_{i+1}) - f(x)| + |f(x) - f(t_i)|.$

$$V(f, [a, b]) \le \sup_{\pi' \in \Pi_{[a, x]}} v(f, \pi') + \sup_{\pi'' \in \Pi_{[x, b]}} v(f, \pi'')$$

Donc V(f, [a, b]) = V(f, [a, x]) + V(f, [x, b]) donc V(f, [a, .]) est croissante.

– De plus, on montre de même que V(f,[a,y])=V(f,[a,x])+V(f,[x,y]) . Or :

$$V(f, [x, y]) \ge \sum_{k=0}^{n-1} |f(t_{i+1}) - f(t_i)|, \ x = x_0 < \dots < x_n = y$$

$$\ge |f(y) - f(x)|$$

$$\ge f(y) - f(x)$$

Donc $V(f, [a, y]) \ge V(f, [a, x]) + f(y) - f(x)$ d'où le résultat.

🗱 Il existe des fonctions intégrables, et même continues, qui ne sont pas à variation bornées. On peut cependant montrer que les fonctions de classe C^1 sont à variations bornées.

Proposition 13.3

Soit $f:[a,b] \to \mathbb{R}$. Alors:

$$f \in VB[a,b] \iff \square$$

 $f \in VB[a,b] \\ \Longleftrightarrow \\ \mathit{Il existe } g_1,g_2:[a,b] \to \mathbb{R} \ \mathit{croissantes telles que} \ f=g_1-g_2.$

PREUVE: Pour le sens direct, utiliser les fonctions croissantes données par le lemme 13.1. Le sens indirect est trivial $(VB[a, b] \text{ est un } \mathbb{R}-\text{e.v}).$

Lemme 13.2

Soit $f \in L^1(\mathbb{T})$ tel que $\int_{-1}^1 \left| \frac{f(t)}{t} \right| dt < \infty$. Alors:

$$\lim_{n \to \infty} S_n(f)(0) = 0$$

Lemme 13.3

Soit $f:[a,b] \to \mathbb{R}$ une fonction monotone. Alors:

$$\forall \alpha \in \mathbb{R}, \ \left| \alpha \int_{a}^{b} f(x)e^{i\alpha x} dx \right| \le |f(a) - f(b)| + |f(a) - e^{i\alpha}f(b)|$$

PREUVE : Si $\alpha = 0$, le résultat est trivial. Sinon, quitte à changer de variable, plaçons nous sur [a,b] = [0,1]. Alors, par sommes de Riemmann (f est monotone et $e^{i\alpha}$ continue donc notre function est Riemann-intégrable):

$$\alpha \int_0^1 f(x)e^{i\alpha x}dx = \lim_{n \to \infty} \frac{\alpha}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) e^{i\alpha \frac{k}{n}}$$

Posons:

$$S = \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) e^{i\alpha \frac{k}{n}}, \ \tilde{S} = \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) e^{i\alpha \frac{k+1}{n}}$$

On a alors que $S = \frac{1}{1 - e^{i\frac{\alpha}{n}}} (S - \tilde{S})$. Donc :

$$\left|\frac{\alpha}{n}S\right| = \left|\frac{\alpha}{n}\frac{1}{1 - e^{i\frac{\alpha}{n}}}\left(\sum_{k=1}^{n}\left(f\left(\frac{k}{n}\right) - f\left(\frac{k-1}{n}\right)\right)\right)\right|$$

Or, par développement limité, $|n(1-e^{i\frac{\alpha}{n}})| = |\alpha| + O\left(\frac{1}{|n|}\right)$ d'où le résultat.

Proposition 13.4

Soit $f \in L^1(\mathbb{T}) \cap VB[0, 2\pi]$. Alors $\sup_n |n\widehat{f}(n)| < \infty$.

PREUVE : Quitte à utiliser la décomposition de la proposition 13.3, on peut supposer f croissante. On obtient ainsi le résultat en appliquant le lemme 13.3 avec $\alpha = -n$.

Corollaire 13.4.1

Soit $f \in L^1(\mathbb{T}) \cap VB[0, 2\pi]$. Alors:

- (i) $(S_n(f))_n$ converge vers \check{f} .
- (ii) La convergence est uniforme sur les intervalles fermés de continuité de f.

 \mathcal{F} Si f est continue en $t \in To$, $\check{f}(t) = f(t)$.

Proposition 13.5 (Dini)

Soit $f \in L^1(\mathbb{T})$. Soit $t_0 \in \mathbb{T}$ tel que:

$$\int_{-1}^{1} \left| \frac{f(t+t_0) - f(t_0)}{t} \right| dt < \infty$$

Alors:

$$\lim_{n \to \infty} S_n(f)(t_0) = f(t_0)$$

PREUVE: Pour $t \in \mathbb{T}$ posons $G(t) = |f(t_0 + t) - f(t_0)|$. Par hypothèse, $\int_{-1}^{1} \left| \frac{G(t)}{t} \right| dt < \infty$ donc par lemme 13.2, $S_n(G)(0) \to 0$. Or $S_n(G)(0) = S_n(f_{-t_0})(0) - f(t_0) = S_n(f)(t_0) - f(t_0)$ d'où le résultat.

Transformée de Fourier

Ce chapitre est hors-programme.

Pour étudier des fonctions non-périodiques, on ne peut se ramener au fort sympathique compact \mathbb{T} , la dite étude ne pouvant être menée que sur \mathbb{R} . Il est à noter que si toute la théorie établie pour $L^1(\mathbb{T})$ se généralise assez directement à $L^1(\mathbb{R})$, $L^2(\mathbb{R}) \not\subset L^1(\mathbb{R})$ et donc la théorie de $L^2(\mathbb{T})$ ne s'étend pas naturellement à $L^2(\mathbb{R})$.

I Définitions, propriétés générales

Définition 14.1 (Transformée de Fourier)

Soit $f \in L^1(\mathbb{R})$. On définit la transformée de Fourier de f comme la fonction qui à $\xi \in \mathbb{R}$ associe

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-ix\xi}dx$$

Proposition 14.1

Soient $f, g \in L^1(\mathbb{R})$ et $\xi \in \mathbb{R}$. Alors:

(i)
$$\widehat{f+g}(\xi) = \widehat{f}(\xi) + \widehat{g}(\xi)$$

(ii)
$$\forall a \in \mathbb{C}, \ \widehat{af}(\xi) = a\widehat{f}(\xi)$$

(iii)
$$\widehat{\overline{f}}(\xi) = \overline{\widehat{f}(-\xi)}$$

(iv) Si
$$y \in \mathbb{R}$$
 et $f_y : f \mapsto f(t-y)$ alors $\widehat{f}_y(\xi) = \widehat{f}(\xi)e^{-iny}$

$$(v) |\widehat{f}(\xi)| \le ||f||_1$$

Proposition 14.2

Soit $f \in L^1(\mathbb{R})$. Alors \widehat{f} est u.c sur \mathbb{R} .

Proposition 14.3 (Produit de convolution)

Soient $f, g \in L^1(\mathbb{R})$ et $x \in \mathbb{R}$. Alors:

- (i) La fonction $y \mapsto f(t-y)g(y)$ est intégrable sur \mathbb{R} .
- (ii) La fonction $f * g : t \mapsto \int_{\mathbb{R}} f(t-y)g(y)dy$, appelée produit de convolution (ou convolée) de f et g, vérifie :
 - (a) $f * g \in L^1(\mathbb{R})$
 - (b) $||f * g||_1 \le ||f||_1 ||g||_1$
 - (c) $\forall \xi \in \mathbb{R}, \ \widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$

Proposition 14.4

 $(L^1(\mathbb{R}), +, *, .)$ est une algèbre de Banach commutative non unitaire.

Proposition 14.5

Soient $f, g, H \in L^1(\mathbb{R})$. On pose $\forall x \in \mathbb{R}$, $h(x) = \frac{1}{2\pi} \int_{\mathbb{R}} H(\xi) e^{i\xi x} d\xi$. Alors:

$$\forall x \in \mathbb{R}, \ h * f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} H(\xi) \widehat{f}(\xi) e^{i\xi x} d\xi$$

Proposition 14.6

Soit $f \in L^1(\mathbb{R})$. On pose $F : x \mapsto \int_{-\infty}^x f(y) dy$. Si $F \in L^1(\mathbb{R})$, alors :

$$\forall \xi \in \mathbb{R}^*, \ \widehat{F}(\xi) = \frac{1}{i\xi} \widehat{f}(\xi)$$

.

Notons que $(F \in L^1(\mathbb{R})) \Rightarrow (\lim_{\infty} F = 0)$. Pour un contre-exemple, considérons la fonction suivante :

$$F: x \mapsto \sum_{k=1}^{\infty} \ln(k) 1_{[k,k+\frac{1}{k^2}]}$$

On a alors:

$$\int_{\mathbb{R}} F(x)dx = \sum_{k=1}^{\infty} \frac{\ln(k)}{k^2} < \infty$$

Pourtant, F ne tend pas vers 0 en l'infini. Ceci étant, cette implication est vraie dés que $F' \in {}^{1}(\mathbb{R})$. Un énoncé équivalent de la proposition 14.6 est :

Proposition 14.7

Soit $f \in L^1(\mathbb{R})$ telle que $f' \in L^1$. Alors, $\forall \xi \neq 0$, $\widehat{f'}(\xi) = i\xi \widehat{f}(\xi)$.

Proposition 14.8

Soit $f \in L^1(\mathbb{R})$ telle que $\varphi : x \mapsto xf(x) \in L^1(\mathbb{R})$. Alors :

(i) \hat{f} est dérivable.

(ii)
$$\forall \xi \in \mathbb{R}, \ \frac{d\widehat{f}}{d\xi}(\xi) = -i\widehat{\varphi}(\xi)$$

 \bigstar Par abus, on note souvent φ "xf".

PREUVE : Soit $h \neq 0$ et soit $\xi \in \mathbb{R}$. Alors :

$$\Delta_h := \frac{\widehat{f}(\xi+h) - \widehat{f}(\xi)}{h} = \int_{\mathbb{R}} f(x) e^{-i\xi x} \left(\frac{e^{ihx} - 1}{h}\right) dx$$

Or $\left|\frac{e^{ihx}-1}{h}\right| \leq |x|$ par théorème des accroissements finis donc $|\Delta_h| \leq \int_{\mathbb{R}} |xf(x)| dx < \infty$. D'où le (i).

Pour le (ii), il suffit de remarquer que $f(x)e^{-i\xi x}\left(\frac{e^{ihx}-1}{h}\right) \xrightarrow[h\to 0]{} -ixf(x)e^{-i\xi x}$ et de conclure par convergence dominée (appliquer la proposition 1.5 puis une caractérisation séquentielle).

Proposition 14.9 (Riemann-Lebesgue)

Soit $f \in L^1(\mathbb{R})$. Alors:

$$\lim_{|\xi| \to \infty} \widehat{f}(\xi) = 0$$

PREUVE : Si $g \in \mathcal{C}_c^1(\mathbb{R})$, $g' \in \mathcal{C}_c(\mathbb{R})$ et donc $g(x) = \int_{-\infty}^x g'(y) dy$ et donc $\forall \xi \in \mathbb{R}$, $|\xi \widehat{g}(\xi)| = |\widehat{g'}(\xi)| \le ||g'||_1 < \infty$ donc $\exists K > 0$ tel que sup $|\xi \widehat{g}(\xi)| \le K$ d'où le résultat. Conclure par densité de $\mathcal{C}_c^1(\mathbb{R})$ dans $L^1(\mathbb{R})$.

II Régularisation

Notation: On notera désormais $\mathcal{D}(\mathbb{R}) = \mathcal{C}_c^{\infty}(\mathbb{R})$.

Remarques:

- 1. $\forall p \in \mathbb{N}, \ \mathcal{D}(\mathbb{R}) \subset \mathcal{C}_c^{p+1}(\mathbb{R}) \subset \mathcal{C}_c^p(\mathbb{R}) \subset L^1(\mathbb{R})$
- 2. On pose $(c \neq 0)$ $\rho(x) := \begin{cases} \frac{1}{c} \exp\left(-\frac{1}{1-x^2}\right) & \text{si } |x| < 1 \\ 0 & \text{sinon} \end{cases}$ Alors ρ est non analytique, i.e sa série de Taylor converge, mais pas vers ρ .

Définition 14.2 (Suite régularisante)

On appelle suite régularisante une suite de fonctions $(\rho_n)_n$ telle que :

- (i) $\forall n \geq 0, \, \rho_n \in \mathcal{D}(\mathbb{R})$
- (ii) $\forall n \geq 0, \, \rho_n \geq 0$
- (iii) $\forall n \geq 0, \int_{\mathbb{R}} \rho_n(x) dx = 1$
- (iv) Il existe une suite $(\varepsilon_n)_n \in \mathbb{R}_+^{*\mathbb{N}}$ vérifiant que $\begin{cases} \forall n \geq 0, \, \operatorname{supp}(\rho_n) \subset [-\varepsilon_n, \varepsilon_n] \\ \varepsilon_n \xrightarrow[n \to \infty]{} 0 \end{cases}$

Exemple Poser pour $n \ge 0$, $\rho_n(x) = n\rho(xn)$.

Définition 14.3 (Suite des régularisées)

Soit $f \in L^1(\mathbb{R})$.

Soit $(\rho_n)_n$ une suite régularisante.

On appelle suite des régularisées de f la suite $(\rho_n * f)_n$.

Lemme 14.1

Soit $f \in L^1(\mathbb{R})$.

Soit $(\rho_n)_n$ une suite régularisante.

Alors: $\forall n \in \mathbb{N}, \, \rho_n * f \in \mathcal{C}^{\infty}(\mathbb{R}).$

ATTENTION:
$$\rho_n * f \notin \mathcal{C}_c^{\infty}(\mathbb{R})$$

Proposition 14.10

 $\mathcal{D}(\mathbb{R})$ est dense dans $L^p(\mathbb{R})$ pour $p \geq 1$.

PREUVE : Par densité, $\forall f \in L^p, \forall \varepsilon > 0, \ \exists f_{\varepsilon} \in \mathcal{C}_c(\mathbb{R})$ tel que $\|f - f_{\varepsilon}\|_p \leq \varepsilon$. Conclure en approximant f_{ε} par $g_n := \rho_n * f_{\varepsilon} \in \mathcal{D}(\mathbb{R})$, avec $(\rho_n)_n$ une suite régularisante.

III Identités approchées, noyau de Fejèr

Définition 14.4 (Identité approchée sur R)

Soit $A \subset \mathbb{R}$. On appelle identité approchée sur \mathbb{R} une famille de fonctions $k_{\alpha} : \mathbb{R} \to \mathbb{R}$, $\alpha \in A$ vérifiant :

- (i) $\forall \alpha \in A, \int_{\mathbb{R}} k_{\alpha}(x) dx = 1$
- (ii) $||k_{\alpha}|| = O(1)$ quand $\alpha \to \sup A$.
- (iii) $\forall \delta > 0, \int_{-\alpha}^{\alpha} |k_{\alpha}(x)| dx \xrightarrow{\alpha \to \sup A} 0$

En pratique, on prend souvent $A = \mathbb{R}_+^*$.

Définition 14.5 (Noyau de Fejèr)

On définit le noyau de Fejèr $(F_{\alpha})_{\alpha>0}$ par $\forall x \in \mathbb{R}, F_{\alpha}(x) = \alpha F(\alpha x)$ où :

$$F(x) = \frac{1}{2\pi} \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \right)^2 = \frac{1}{2\pi} \int_{-1}^{1} (1 - |\xi|) e^{i\xi x} d\xi$$

Lemme 14.2

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \right)^2 dx = 1$$

PREUVE : Considérer la fonction définie sur \mathbb{C}^* par $f(z) = \frac{1 - e^{2iz}}{z^2}$ et l'intégrer selon le chemin $C_{\varepsilon,R}$ consistant à parcourir dans le sens trigonométrique le demi cercle de centre 0 et de rayon R privé de celui de centre 0 et de rayon ε .

Proposition 14.11

 $(F_{\alpha})_{\alpha>0}$ est une identité approchée.

Proposition 14.12

Soit $f \in L^1(\mathbb{R})$ et soit $(k_\alpha)_{\alpha \in A}$ une identité approchée. Alors $||k_\alpha * f - f||_1 \xrightarrow[\alpha \to \sup A]{} 0$.

Proposition 14.13

Soit $f \in L^1(\mathbb{R})$. Alors:

$$\left\| \frac{1}{2\pi} \int_{-\alpha}^{\alpha} \left(1 - \frac{|\xi|}{\alpha} \right) \widehat{f}(\xi) e^{i\xi x} d\xi \right\|_{1} \xrightarrow[\alpha \to \infty]{} 0$$

Preuve : Découle des propositions 14.11 et 14.12.

Corollaire 14.13.1 (Théorème d'unicité)

Soit $f \in L^1(\mathbb{R})$ vérifiant que $\forall \xi \in \mathbb{R}$, $\widehat{f}(\xi) = 0$. Alors f = 0.

Remarque : Si $\hat{f} \in L^1(\mathbb{R})$ alors on peut appliquer le théorème de convergence dominée à $g_{\alpha}: (x,\xi) \mapsto \frac{1}{2\pi} \left(1 - \frac{|\xi|}{\alpha}\right) \hat{f}(\xi) e^{i\xi x} 1\!\!1_{[-\alpha,\alpha]}(\xi)$ (domination par \hat{f}) pour obtenir que :

$$\int_{\mathbb{R}} g_{\alpha}(x,\xi)d\xi \xrightarrow[\alpha \to \infty]{} \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\xi)e^{i\xi x}d\xi$$

Et comme $g_{\alpha}(x,.) \xrightarrow{L^1} f(x)$ on obtient que :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(\xi) e^{i\xi x} d\xi$$

Ainsi, si on pose $h(x):=\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(\xi)e^{i\xi x}d\xi$ on peut montrer que h est uniformément continue. Ainsi, on en déduit le résultat suivant : $si\ \widehat{f}\in L^1(\mathbb{R})$, la classe d'équivalence $f\in L^1(\mathbb{R})$ contient une fonction uniformément continue.

Le résultat suivant est analogue à la proposition 9.5 (densité des polynômes trigonométriques).

Proposition 14.14

Les fonctions de $L^1(\mathbb{R})$ dont la transformée de Fourier est à support compact forment un sousensemble dense de $L^1(\mathbb{R})$.

L'espace $L^2(\mathbb{R})$

* Ce chapitre est hors-programme.

I Position du problème

La transformée de Fourier définie sur $L^1(\mathbb{R})$ ne se généralise pas naturellement à $L^2(\mathbb{R})$ pour la simple et bonne raison que $L^2(\mathbb{R}) \not\subset L^1(\mathbb{R})$. On va donc devoir utiliser le résultat d'analyse fonctionnelle suivant pour étendre notre définition.

Proposition 15.1

Soient $\mathbb X$ un e.v.n, $\mathbb Y$ un espace de Banach et $\mathbb W\subset \mathbb X$ un s-e.v dense.

Soit $\mathcal{F} \in \mathcal{L}_c(\mathbb{W}, \mathbb{Y})$.

Alors: $\exists ! \tilde{\mathcal{F}} \in \mathcal{L}_c(\mathbb{X}, \mathbb{Y}) \ tel \ que$:

- (i) La restriction de $\tilde{\mathcal{F}}$ est égale à \mathcal{F} .
- (ii) $\|\tilde{\mathcal{F}}\| = \|\mathcal{F}\|$

Le problème qui se pose à présent est de trouver un s-e.v dense de $L^2(\mathbb{R})$ sur lequel on puisse définir naturellement une transformée de Fourier, i.e qui soit inclus dans $L^1(\mathbb{R})$.

II L'espace de Schwartz $\mathcal{S}(\mathbb{R})$

Définition 15.1 (Fonction à décroissance rapide)

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite à décroissance rapide si elle décroit plus vite que tout polynôme, i.e si $\forall p \in \mathbb{N}, |x^p f(x)| \xrightarrow[|x| \to \infty]{} 0$.

Proposition 15.2

Soit $f: \mathbb{R} \to \mathbb{R}$. Alors:

- 1. Si $f \in f \in L^1_{loc}(\mathbb{R})$ alors f est à décroissance rapide.
- 2. Si $f \in f \in L^1(\mathbb{R})$ et est à décroissance rapide, alors $\widehat{f} \in \mathcal{C}^{\infty}(\mathbb{R})$.
- 3. Si $f \in \mathcal{C}^{\infty}(\mathbb{R})$ et que $\forall k \geq 0$, $f^{(k)} \in L^1(\mathbb{R})$ alors \widehat{f} est à décroissance rapide.

Définition 15.2 (Espace de Schwartz)

On définit l'espace de Schwartz, noté $\mathcal{S}(\mathbb{R})$, comme l'espace vectoriel des fonctions $f:\mathbb{R}\to\mathbb{R}$ vérifiant :

- (i) $f \in \mathcal{C}^{\infty}(\mathbb{R})$
- (ii) $\forall k \geq 0, f^{(k)}$ est à décroissance rapide (avec la convention $f^{(0)} = f$).

Proposition 15.3

On a les propriétés suivantes :

- 1. $S(\mathbb{R})$ est stable par multiplication par un polynôme.
- 2. $\mathcal{S}(\mathbb{R})$ est stable par dérivation.

- 3. $\mathcal{S}(\mathbb{R}) \subset L^1(\mathbb{R})$
- 4. $\mathcal{S}(\mathbb{R})$ est stable par transformée de Fourier.
- 5. $S(\mathbb{R})$ est dense dans $L^1(\mathbb{R})$.
- 6. $S(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$.

PREUVE : Pour 5 et 6, il suffit de remarquer que $\mathcal{D}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R})$ et que $\mathcal{D}(\mathbb{R})$ est dense dans L^1 . Remarquons que $\mathcal{D}(\mathbb{R})$ n'est pas stable par transformée de Fourier.

Proposition 15.4 (Identité de Plancherel-Parseval)

Soient $f, g \in \mathcal{S}(\mathbb{R})$. Alors

(i)
$$\frac{1}{2\pi} \int_{\mathbb{R}} \overline{\widehat{f}}(\xi) \widehat{g}(\xi) d\xi = \int_{\mathbb{R}} \overline{f}(x) g(x) dx$$

(ii)
$$\frac{1}{2\pi} \int_{\mathbb{R}} |\widehat{f}(\xi)|^2 d\xi = \int_{\mathbb{R}} |f(x)|^2 dx$$

 $\stackrel{\mbox{\@W}}{\otimes}$ Ainsi, on peut étendre par la proposition 15.1 la transformée de Fourier de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$:

Proposition 15.5 (Plancherel)

Il existe un unique opérateur $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ vérifiant :

(i)
$$\forall f \in L^2(\mathbb{R}), \|\mathcal{F}f\|_2 = \sqrt{2\pi} \|f\|_2$$

(ii)
$$\forall f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}), \ \mathcal{F}f = \widehat{f}$$

 $\mathbb{Z}_{\mathbb{D}}$ En pratique, si $f \in L^2(\mathbb{R})$ est approximée par une suite $(f_n)_n$ de $\mathcal{S}(\mathbb{R})$, on a que $\widehat{f_n} \xrightarrow[n \to \infty]{L^2} \mathcal{F}f$, ce qui permet le calcul "explicite de la transformée de Fourier de f.