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Definitions of stable distributions/processes

Stable distributions/Processes with index «, Definitions

Stable distributions

A random variable (r.v.) X has a stable law if there exists
constants ¢, > 0 and d,, € R such that:

Xi1+...+ X 4 cnX +d, Yn>1, where X;, i > 1 arei.i.d copy
of X.

If d, = 0 one says that X is strictly stable.

For such a distribution, it is known that ¢, = cst n*/* with
a €]0,2].

« is called the index of stability.

if « =2, X is the gaussian r.v.

We'll say that X is an a-stable r.v or simply a-stable.



The Lévy Khintchine representation

@ In the case o € (0, 2) one specify the characteristic function of
an a-stable random variable X as follows Ee/®X = e¥(?) where

g i0x 2 1
¢(9) = Ib9+/(e 2 —1—19x1|x|§1)W(C11X<0+C21X>0)dx,

with ¢1, 0 > 0 and ¢ + ¢ > 0. We'll say that X is a-stable
with characteristics (b, c1, ¢2).

@ Other representations exists,[Samorodnisky and Taqqu],
[Zoloarev] but their are the same.

@ In the sequel, an a-stable process (X;, t > 0) is a Lévy process
such that the r.v. Xj is a-stable.
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A central limit theorem for i.i.d. random variables

The generalized Central Limit Theorem (GCLT)

GCLT, [Gnedenko-Kolmogorov]

Let (Xj)i>1 be iid random variables with common cumulative
distribution function F. Denotes by Y, an a-stable with local
caracteristics (ci1, ¢2). There exists suitable constants a, > 0,
b, € R such that

3t X~ by S Ve
i=1

if and only if G(x) =1 — F(x) — F(—x) is regularly varying of

order —« and
1—F(x) o F(—x) o

imxs00 ToFTE(E) = atar 1Mx—oo TR = ata
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@ The Pareto distribution X of type I, with tail distribution
P[X > x] = ¢ x *1x=0 with ¢ > 0 and « € (0,2), belongs

o Let Z ~1T(a,\), where ['(a, \) is the Gamma distribution with
parameters a and 0 < A < 2. Define X = eZ. We have
P[X > x] ~ y~*L(y) for some slowly varying function L so
that X € D(«, Ya,).

@ (a,) can be taken to be a, = n

e and if @ € (1,2) we can take b, = nE(X) and b, = 0 for
a € (0,1).

o If a =2, this result improves in particular the CLT.
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© Mixing and Quantitative ergodicity for Markov chains
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Mixing and Quantitative ergodicity for Markov chains

Mixing sequences

o Let Fj ( resp. G;)) be respectively the past and the future
o-fields generated by a sequence (X,) for 0 < n <
(resp.j < n).

Strongly Mixing [Bradley, Rio]

The strong mixing coefficient «a(n) is defined as :

a(n) = su_p{i‘ug (P(An B) —P(A)P(B)) A€ Fj, B€ Gjin}.

o If lim,_,o a(n) = 0, the sequence is strongly mixing.



Mixing and Quantitative ergodicity for Markov chains

p-Mixing and ¢-Mixing [Peligrad, Doukhan]

The p-mixing coefficient p(n) is defined as the maximal correlation
coefficient, i.e.

p(n) = sup{sup Corr(F,G), F € L*(F}), G € L*(Gnyj)} -
j F.G

The ¢-mixing coefficient p(n) is defined as:

() = sup{sup (P(B|4) ~ B(B)) . A € F;, B € Gy}

o If lim,_ 00 p(n) = 0 the sequence is p-mixing.

o If lim,— 00 0(n) = 0, the sequence is p-mixing.



Mixing and Quantitative ergodicity for Markov chains

Quantitative ergodicity for Markov chains

e Let (X,) be an irreducible, aperiodic and positive recurrent
Markov chain with invariant probability measure u. We
denote by P the transition kernel of the chain.

Rates of ergodicity

For p,r > 1 we define

arpln) = Sup {1 P8 oy Ve : | € o= and [ g =0

4

We define similarly a7, ,(n) for the adjoint operator P*.

v

@ Interestings rates in the sequel are the following: s or app,
Noo,2 and 1,00
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Mixing and Quantitative ergodicity for Markov chains

® app or aj, is given by the following well known spectral gap
estimate:

Proposition

Under the previous assumptions for the chain, the following are
equivalent

(1)  Vf eL?(u) and all n, Var,(P"f) < e=2*" Var,(f),
(2)  there exists C > 1, such that Vf € L?(p),

Var, (f) < C((I — P*P)f, f) := /(f — P*Pf)fdy,

o o ; -\ _ C-1
where C is given by the relation e™* = ===.

V.

o This shows that as(n) < e~ for f such that u(f) = 0 and

(p—1)
f|l> = 1. It follows also that o, p(n) < 265 for all
p.p

p> 1
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Mixing and Quantitative ergodicity for Markov chains

Example
o Consider the Birth and death chain (BDC) in the space N

P(x,x+1)=px >0, P(x,x —1) =gx >0,

P(Xax):]-_px_qX7 CIOZO
The chain is positively recurrent if and only if

Zpopl le_ZA < 400,
x>0 x>0

in which case, the unique invariant (reversible) distribution is
given by u(x) = u(0) Ax for all x > 0.
@ It is well known that there exist a spectral gap provided

w—i—bpx for some b >1 and d >0
b_]. fi1/28
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Mixing and Quantitative ergodicity for Markov chains

Example

@ The reflected random walk on N is given from (BDC) when
px and gy are constant:

px=p, gGx=qg=1—q, and P(x,x)=01if x#0

The chain is positive recurrent if g > p and the invariant
distribution (reversible) is the geometric distribution on N

—(1- Py(Py
p(ax) = (1 q)(q)

@ The above spectral gap condition for (BDC) enforces the
parameters to be g > p for the reflected random walk.
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Mixing and Quantitative ergodicity for Markov chains

About a2
@ It can be compute in terms of weak Poincaré inequalities. We
call weak Poincaré inequality (WPI), an inequality of the form:
Var,(f) < B(s)((I=P*P)f, f)+s||f—u()I5 s €(0,1] (M),

where 3 is a non increasing function.

@ In the continuous time case, but using derivatives, this was
introduced by M. Rockner and F.Y. Wang.
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Mixing and Quantitative ergodicity for Markov chains

Proposition
o If the (WPI) in (#) holds for some non increasing function £,
then aso2(n) and a, ,(n), — 0 as n — oc.
o Conversely, if P is symetric, any decay to 0 of ao 2(n) will
imply some (WPI) in ().
In general however, we do not know wether a2, a5 are equal
or have the same behaviour. )

*
About 100 OF Qf .

@ The rate a1 o(n) specifies that the semi groupe (Pp,n > 0) is
hyperbounded (hypercontractivity or ultracontractivity) and

can be described in terms of log-Sobolev inequalities.
13/28



Mixing and Quantitative ergodicity for Markov chains

Link between Mixing property and ergodicity property.

Proposition

For all n, let [n] denotes the integer part of n.
(1) 02(n) V (0" o(n) < da(n) < awe[n/2]) 0% o([/2)).
@)

az2(n) = (a)3(n) < p(n) < caza(n).

(3)  (n) < af . ([n/2]).

Idea of the proof

@ Use equivalents definitions of Mixing coeficients in terms of
covariance representations, and the Markov property.

14 /28



@ Convergence to stable processes



Convergence to stable processes

Definition

@ We shall say that a random variable Z; is regularly varying of
index o > 0 if there exist some ¢ € [0, 1] such that for all

x>0,
. P(Z > ux) _ . P(Z4 < —ux) _
lim — L) e i LS T gy
Az > 0 = L BA e - T

e If Z; is regularly varying, there exists a slowly varying function
L such that for all x > 0,

P(|Z1| > x) = x * L(x).

@ Note that for a € (0, 2), this allows to deal with non square
integrable random variables.
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Convergence to stable processes

Limits theorems for stationary regularly and mixing
sequences

Let (Z;)i>1 be a stationary and regularly varying sequences and
denotes by S, the partial sum sequences

@ When dealing with convergence to stable
distributions/processes, we need some kind of centering ,
namely we shall consider:

T, = M) To(t) =

dan dan

S[nt] — ntcy

where ¢, = E[Z11|x,|<a,] and a, is defined by
limp_00 NP[|Z|1 > an] = 1.
@ It is interesting to look at the asymptotic behavior of

0= B (215,
an

an
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Convergence to stable processes

Proposition
For a € (1,2) and E,,(Z;1) = 0 we have

im T~ % (2c—1).

n—+o00  ap 11—«

@ The same relation holds in the case o € (0, 1) (thanks to
Karamata Theorem).

e This proposition allows to deal only with S, up to some
slight change in the characteristics of the limit process.
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Convergence to stable processes

About the litterature in the context of Mixing sequences

o (1)[Davis] R.Davis Stable limits for partial sums of dependent
random variables, Ann.Probab. n11, 262-269, (1983).

e (2) [TK] M.Tyran-Kaminska. Convergence to Lévy stable
processes under some weak dependence conditions. Stochastic
Process. Appl. 120, n9, 1629-1650, (2010)

e (3) [BKS] B.Basrak, D.Krizmanic, and J.Seger. A
functional limit theorem for dependent sequences with infinite
variance stable limits. Ann.Probab. 40, N5 2008-2033 (2012).

e (4) [BJMW] K.Bartkiewicz and Al. Stable limits for sums of
dependent infinite variance random variables. Probab.Theory
Relat.Fields, 150: 337-372, (2011).
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Convergence to stable processes

@ The following condition called the Anti-clustering
conditions (AC) which is familar from extreme value theory,
is relevant when dealing with convergence to a-stable process.

Sufficient Anti Clustering Condition (AC)

[n/K]
lim limsup Z nP,(|Z1| >¢ean, |Zj| >cap,) =0, Ve>0.

k—~+o00 n—-+o0o

Jj=2

@ Such conditions are assumed in the above papers, namely
known as : condition D’ of R.Davis, condition (x) of Denker
and Jakubowski.
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Convergence to stable processes

Necessary Anti Clustering Condition (NAC)

A neccessary Anti clustering condition is described by the following
condition: ( Condition (3.19) in [M.Tyran-Kaminskal))

nli}rroo 17, <2§T§r§n) |Zj| > ean||Z1] > 5a,,> = 0. r(n)=o(n)
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Convergence to stable processes

@ In the previous we discussed spectral gap properties and
compared them to mixing properties.

@ Now, once this correspondance is understood, the only thing
to do, is to check the so called " Anti clustring” conditions.
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Functional limit Theorem for some functional for Markov chains

Theorem

Let (Xn)n>0 be an irreducible, aperiodic and positive recurrent
Markov chain with unique invariant probability measure 1. Let f
be such that Z; = f(X1) is regularly varying of index € (1,2)
and [ fdu = 0.

© Assume that the chain has a spectral gap.

Q If P|f| or P*|f| belongs to L®*7 (1) for some 3 > 0 then

i S (f) = ?1,, Zj[":t]l f(X;) converges (under ), in the
Skorohod topology to an a-stable process.

@ A CLT of this kind was obtained in 2009 by [ M.Jara,
T.Komorowski and S.Olla] "Limits Theorems for additive
functionals of a Markov chain”. Ann. of Applied Probab.,
19(6): 2270-2300, (2009) using martingale approximation.
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Functional limit Theorem for some functional for Markov chains

The next result contains the case o € (0, 1].

Theorem

Let (Xn)n>0 be an irreducible, aperiodic and positive recurrent
Markov chain with unique invariant probability measure 1. Let f
be such that Z; = f(X1) is regularly varying of index o € (0, 2).
Assume that f is symetric under P, in the case oo = 1.

© Assume also that the chain has a spectral gap.

@ If for somen < «, f € L"(u) and P|f|" or P*]f|77 belongs to
LY*+8(u) for some 3 > 0 such that 1 > @y then

i S (f) = Z["t] f(X;) converges (underP,), in the
Skorohod topology to an a-stable process.

25 /28



@ Some examples



Some examples

@ For the reflected random walk, the Necessary Anti clustering
Condition (NAC) fail to holds.

@ A nice example of Markov chain in superdiffusion of energy in
a lattice dynamic was studied by [Jara,Olla, Komorowski].
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Some examples

Example

One can also consider the following situation:
P = Pt for some T > 0, where (P:)>0 is continuous time
hyperbounded Markov process with invariant measure .

@ In this case 7 will satisfy a log-Sobolev inequality with
I — %(P + P*) as infinitesimal generator.

@ and we can look at numerical schemes ( Euler scheme) for
approximating hypercontractive diffusion processes

@ Note that in many situations the hypercontractivity property
is preserved.
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