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a) Mathematical formulation
b) Non dimensionalized equations

Assumptions and physical law

We consider a fluid occupying a domain Ωt in Rd+1 limited
from below by a fixed bottom and above by a free surface.

The fluid is homogeneous inviscid, incompressible, irrotational
with no surface tension.

Ωt = {(x , z) , − H + b(x , t) < z < ζ(t, x)}.

The fluid particles do not cross the bottom or the surface.

At the surface, we have a pressure P0 = P0(x , t).

The water depth is bounded from below by hmin > 0.
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a) Mathematical formulation
b) Non dimensionalized equations

We denote by U the velocity of the fluid particle and Φ its
potential. we have :

∆x ,zΦ = 0, − H + b < z < ζ,

and

∂tΦ +
1
2 |∇x ,zΦ|2 + gζ = −P0

ρ
, on z = ζ.

The boundary conditions imply :

∂nΦ = 0, on z = −H + b,
and

∂tζ −
√
1 + |∇xζ|2∂nΦ = 0, on z = ζ.
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a) Mathematical formulation
b) Non dimensionalized equations

The Zakharov/Craig-Sulem formulation

We consider the following standard problem :{
∆x ,zΦ = 0, − H + b < z < ζ
Φ|z=ζ = ψ, ∂nΦ|z=−H+b = 0.

We introduce the Dirichlet-Neumann operator :

G [ζ, b](ψ) =
√
1 + |∇xζ|2∂nΦ|z=ζ .

If ζ = 0 and b = 0, ̂G [ζ, b](ψ)(ξ) = |ξ| tanh(H|ξ|)ψ̂(ξ).
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a) Mathematical formulation
b) Non dimensionalized equations

We can reformulate the whole problem with the two unknown
variables (ζ, ψ) :{

∂tζ − G [ζ, b](ψ) = 0
∂tψ + ζ + 1

2 |∇xψ|2 − (G[ζ,b](ψ)+∇xζ.∇xψ)2

2(1+|∇xζ|2) = −P0
ρ .
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Relevant parameters

We define scale parameters :
The non linearity parameter : ε = a
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a) Mathematical formulation
b) Non dimensionalized equations

We can renormalize the variables :

x ′ =
x
L , z ′ =

z
H , ζ ′ =

ζ

a , · · · .

In the case of the Proudman resonance :

L ∼ 30-100km, H ∼ 50-500m and a ∼ 3-20cm.

ε ∼ 10−3, µ ∼ 10−5-10−6, c ∼ 22-70m/s.
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Conclusion

a) Mathematical formulation
b) Non dimensionalized equations

We introduce the modified gradient ∇µx ,z =
(√
µ∇x , ∂z

)
.

We have the following new system :{
∇µx ,z · ∇µx ,zΦ = 0, − 1 + βb < z < εζ,
Φ|z=εζ = ψ, ∂nΦ|z=−1+βb = 0.

The nondimensionalized Dirichlet-Neumann operator :

G [εζ, βb](ψ) =
√
1 + ε2|∇Xζ|2n · ∇µΦ|z=εζ ,

and the nondimensionalized Zakharov formulation :{
∂tζ − 1

µG [εζ, βb](ψ) = 0
∂tψ + ζ + ε

2 |∇xψ|2 − ε(· · · ) = −P0.
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Conclusion

a) Existence and uniqueness
a) An asymptotic model

Rayleigh-taylor criterion

We can compute the pressure P in Ωt . We denote by
a(ζ, ψ) := − (∂zP)|z=εζ , called the Rayleigh-Taylor coefficient.

If we linearize the water waves equations around (ζ0, ψ0), we have

∂t

(
ζ
ψ

)
+

(
εV 0 · ∇ 1

µGµ[εζ0, βb](·)
a(ζ0, ψ0) εV 0 · ∇

)(
ζ
ψ

)
+ lower term =

(
0
−P

)

If we denote by A :=

(
iεV 0 · ξ 1

µ
̂Gµ[εζ0, βb]

a(ζ0, ψ0) iεV 0 · ξ

)
, we need that

Sp(A) ⊂ iR (hyperbolicity).

Therefore, we need that a(ζ0, ψ0) > 0.
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We can compute the pressure P in Ωt . We denote by
a(ζ, ψ) := − (∂zP)|z=εζ , called the Rayleigh-Taylor coefficient.
If we linearize the water waves equations around (ζ0, ψ0), we have

∂t

(
ζ
ψ

)
+

(
εV 0 · ∇ 1

µGµ[εζ0, βb](·)
a(ζ0, ψ0) εV 0 · ∇

)(
ζ
ψ

)
+ lower term =

(
0
−P

)

If we denote by A :=

(
iεV 0 · ξ 1

µ
̂Gµ[εζ0, βb]

a(ζ0, ψ0) iεV 0 · ξ

)
, we need that

Sp(A) ⊂ iR (hyperbolicity).

Therefore, we need that a(ζ0, ψ0) > 0.
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a) An asymptotic model

Existence and uniqueness of the Water waves equation

For s ≥ 0, we define Ḣs(Rd ) := {u ∈ L2
loc(Rd ),∇u ∈ Hs−1(Rd )}.

Theorem
Let N large enough.
Let P ∈ C0(R+,HN(Rd )), (ψ0, ζ0) ∈ ḢN(Rd )×HN(Rd ), such that

1 + εζ0 + βb0 ≥ hmin and a(ψ0, ζ0) ≥ a0.

There exists T > 0, (ψ, ζ) ∈ C0(
[
0, T

max(ε,β)

]
, ḢN(Rd )× HN(Rd ))

unique solution of the water waves equation with the initial data
(ψ0, ζ0).
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An asymptotic model
We suppose that ε, β, µ are small. We have

∂tζ −

∼−∂2
xψ︷ ︸︸ ︷

1
µ

G [εζ, βb](ψ) = 0

∂tψ + ζ +
ε

2 |∇xψ|2 − ε (· · · )︸ ︷︷ ︸
∼ εC(|ζ|HN ,|b|HN )‖ψ‖ḢN

= −P0.

Proposition
For N large enough, there exists T > 0 and a solution of the water
waves equation (ψ, ζ) ∈ C0(

[
0, T

max(ε,β)

]
, ḢN+1(Rd )× HN(Rd )),{

∂tζ + ∂2
xψ = max(ε, β, µ)R,

∂tψ + ζ = −P0 + max(ε, β, µ)S.
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a) Existence and uniqueness
a) An asymptotic model

Proudman resonance

We consider the following equation
∂tζ + ∂2

xψ = 0,
∂tψ + ζ = −P0,
ζ|t=0 = 0,
ψ|t=0 = 0,

with P0 = P(x − Ut) and U > 0.

Then, we obtain 
∂2

t ζ + ∂2
x ζ = ∂2

x P0,
ζ|t=0 = 0,
∂tζ|t=0 = 0.
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a) Existence and uniqueness
a) An asymptotic model

Using Duhamel formula we can compute ζ.

If U 6= 1,

ζ(t, x) =
1

2(1 + U)
(P(x + t)− P(x − Ut))+

1
2(1− U)

(P(x − t)− P(x − Ut)) .

If U = 1,

ζ(t, x) =
1

2(1 + U)
(P(x + t)− P(x − Ut))− t

2P ′
(x − t).

We have the Proudman resonance.
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Prospects

Include the Coriolis force : here Ro ∼ 10−3.

Understand the Helmholtz resonance in the bay and the
shoaling.

And the landslide-generated tsunamis ?
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