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Stable distributions/Processes with index α, Definitions

Stable distributions

A random variable (r.v.) X has a stable law if there exists
constants cn > 0 and dn ∈ R such that:

X1 + . . .+ Xn
d
= cnX + dn ∀n ≥ 1, where Xi , i ≥ 1 are i.i.d copy

of X .

If dn = 0 one says that X is strictly stable.

For such a distribution, it is known that cn = cst n1/α with
α ∈]0, 2].

α is called the index of stability.

if α = 2, X is the gaussian r.v.

We’ll say that X is an α-stable r.v or simply α-stable.
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The Lévy Khintchine representation

In the case α ∈ (0, 2) one specify the characteristic function of
an α-stable random variable X as follows Ee iθX = eψ(θ) where

ψ(θ) = ibθ+

∫
(e iθx−1−iθx1|x |≤1)

1

|x |1+α
(c11x<0+c21x>0)dx ,

with c1, c2 ≥ 0 and c1 + c2 > 0. We’ll say that X is α-stable
with characteristics (b, c1, c2).

Other representations exists,[Samorodnisky and Taqqu],
[Zoloarev] but their are the same.

In the sequel, an α-stable process (Xt , t ≥ 0) is a Lévy process
such that the r.v. X1 is α-stable.
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The generalized Central Limit Theorem (GCLT)

GCLT, [Gnedenko-Kolmogorov]

Let (Xi )i≥1 be iid random variables with common cumulative
distribution function F . Denotes by Yα an α-stable with local
caracteristics (c1, c2). There exists suitable constants an > 0,
bn ∈ R such that

a−1
n

n∑
i=1

Xi − bn
d→ Yα

if and only if G (x) = 1− F (x)− F (−x) is regularly varying of
order −α and
limx→∞

1−F (x)
1−F (x)+F (−x) = c1

c1+c2
, limx→∞

F (−x)
1−F (x)+F (−x) = c2

c1+c2
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Example

The Pareto distribution X of type I, with tail distribution
P[X > x ] = c x−α1Ix>0 with c > 0 and α ∈ (0, 2), belongs

Let Z ∼ Γ(a, λ), where Γ(a, λ) is the Gamma distribution with
parameters a and 0 < λ < 2. Define X = eZ . We have
P[X > x ] ∼ y−λL(y) for some slowly varying function L so
that X ∈ D(α,Yα).

(an) can be taken to be an = n1/α

and if α ∈ (1, 2) we can take bn = nE(X ) and bn = 0 for
α ∈ (0, 1).

If α = 2, this result improves in particular the CLT.
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Mixing sequences

Let Fj ( resp. Gj)) be respectively the past and the future
σ-fields generated by a sequence (Xn) for 0 ≤ n ≤ j
(resp.j ≤ n).

Strongly Mixing [Bradley, Rio]

The strong mixing coefficient α(n) is defined as :

α(n) = sup
j
{sup
A,B

(P(A ∩ B)− P(A)P(B)) A ∈ Fj , B ∈ Gj+n}.

If limn→∞ α(n) = 0, the sequence is strongly mixing.
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ρ-Mixing and ϕ-Mixing [Peligrad, Doukhan]

The ρ-mixing coefficient ρ(n) is defined as the maximal correlation
coefficient, i.e.

ρ(n) = sup
j
{sup
F ,G

Corr(F ,G ) , F ∈ L2(Fj) , G ∈ L2(Gn+j)} .

The ϕ-mixing coefficient ϕ(n) is defined as:

ϕ(n) = sup
j
{sup
A,B

(P(B|A)− P(B)) , A ∈ Fj , B ∈ Gj+n}.

If limn→∞ ρ(n) = 0 the sequence is ρ-mixing.

If limn→∞ ϕ(n) = 0, the sequence is ϕ-mixing.
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Quantitative ergodicity for Markov chains

Let (Xn) be an irreducible, aperiodic and positive recurrent
Markov chain with invariant probability measure µ. We
denote by P the transition kernel of the chain.

Rates of ergodicity

For p, r ≥ 1 we define

αr ,p(n) = Sup

{
‖ Png ‖Lp(µ) , ∀g : ‖ g ‖Lr (µ)= 1 and

∫
g dµ = 0

}
We define similarly α∗p,r (n) for the adjoint operator P∗.

Interestings rates in the sequel are the following: α2,2 or αp,p,
α∞,2 and α1,∞
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α2,2 or α∗2,2 is given by the following well known spectral gap
estimate:

Proposition

Under the previous assumptions for the chain, the following are
equivalent

(1) ∀f ∈ L2(µ) and all n, Varµ(Pnf ) ≤ e−2λ n Varµ(f ),

(2) there exists C ≥ 1, such that ∀f ∈ L2(µ),

Varµ(f ) ≤ C 〈(I − P∗P)f , f 〉 :=

∫
(f − P∗Pf ) f dµ,

where C is given by the relation e−λ = C−1
C .

This shows that α2,2(n) ≤ e−λn for f such that µ(f ) = 0 and

||f ||2 = 1. It follows also that αp,p(n) ≤ 2e−λn2 (p−1)
p for all

p > 1. 10 / 28
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Example

Consider the Birth and death chain (BDC) in the space N

P(x , x + 1) = px > 0, P(x , x − 1) = qx > 0,

P(x , x) = 1− px − qx , q0 = 0
The chain is positively recurrent if and only if∑

x>0

p0 p1...px−1

q1...qx
:=
∑
x>0

λx < +∞ ,

in which case, the unique invariant (reversible) distribution is
given by µ(x) = µ(0)λx for all x > 0.

It is well known that there exist a spectral gap provided

qx ≥
(d + 1)b

b − 1
+ bpx for some b > 1 and d > 0

11 / 28



Definitions of stable distributions/processes
A central limit theorem for i.i.d. random variables

Mixing and Quantitative ergodicity for Markov chains
Convergence to stable processes

Functional limit Theorem for some functional for Markov chains
Some examples

Example

The reflected random walk on N is given from (BDC) when
px and qx are constant:

px = p, qx = q = 1− q, and P(x , x) = 0 if x 6= 0

The chain is positive recurrent if q > p and the invariant
distribution (reversible) is the geometric distribution on N

µ(dx) = (1− p

q
)(
p

q
)x

The above spectral gap condition for (BDC) enforces the
parameters to be q > p for the reflected random walk.
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About α∞,2.

It can be compute in terms of weak Poincaré inequalities. We
call weak Poincaré inequality (WPI), an inequality of the form:

Varµ(f ) ≤ β(s)〈(I−P∗P)f , f 〉+s||f−µ(f )||2∞ s ∈ (0, 1] (♠),

where β is a non increasing function.

In the continuous time case, but using derivatives, this was
introduced by M. Röckner and F.Y. Wang.
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Proposition

If the (WPI) in (♠) holds for some non increasing function β,
then α∞,2(n) and α∗∞,2(n), → 0 as n→∞.

Conversely, if P is symetric, any decay to 0 of α∞,2(n) will
imply some (WPI) in (♠).

In general however, we do not know wether α∞,2, α∗∞,2 are equal
or have the same behaviour.

About α1,∞ or α∗1,∞.

The rate α1,∞(n) specifies that the semi groupe (Pn, n ≥ 0) is
hyperbounded (hypercontractivity or ultracontractivity) and
can be described in terms of log-Sobolev inequalities.
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Link between Mixing property and ergodicity property.

Proposition

For all n, let [n] denotes the integer part of n.

(1) α2
∞,2(n) ∨ (α∗)2

∞,2(n) ≤ 4α(n) ≤ α∞,2([n/2])α∗∞,2([n/2]).

(2)
α2

2,2(n) = (α∗)2
2,2(n) ≤ ρ(n) ≤ c α2,2(n) .

(3) ϕ(n) ≤ α2
1,∞([n/2]) .

Idea of the proof

Use equivalents definitions of Mixing coeficients in terms of
covariance representations, and the Markov property.
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Definition

We shall say that a random variable Z1 is regularly varying of
index α > 0 if there exist some c ∈ [0, 1] such that for all
x > 0,

lim
u→+∞

P(Z1 > ux)

P(||Z1| > u)
= cx−α, lim

u→+∞

P(Z1 < −ux)

P(|Z1| > u)
= (1−c)x−α

If Z1 is regularly varying, there exists a slowly varying function
L such that for all x > 0,

P(|Z1| > x) = x−α L(x) .

Note that for α ∈ (0, 2), this allows to deal with non square
integrable random variables.
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Limits theorems for stationary regularly and mixing
sequences

Let (Zi )i≥1 be a stationary and regularly varying sequences and
denotes by Sn, the partial sum sequences

When dealing with convergence to stable
distributions/processes, we need some kind of centering ,
namely we shall consider:

Tn =
Sn − ncn

an
, Tn(t) =

S[nt] − ntcn

an

where cn = E[Z11|X1|≤an ] and an is defined by
limn→∞ nP[|Z |1 > an] = 1.
It is interesting to look at the asymptotic behavior of

ncn
an

=
n

an
E
[
Z1 1I|Z1|≤an

]
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Proposition

For α ∈ (1, 2) and Eµ(Z1) = 0 we have

lim
n→+∞

n cn
an

=
α

1− α
(2c − 1) .

The same relation holds in the case α ∈ (0, 1) (thanks to
Karamata Theorem).

This proposition allows to deal only with S[nt] up to some
slight change in the characteristics of the limit process.
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About the litterature in the context of Mixing sequences

(1)[Davis] R.Davis Stable limits for partial sums of dependent
random variables, Ann.Probab. n11, 262-269, (1983).

(2) [TK] M.Tyran-Kaminska. Convergence to Lévy stable
processes under some weak dependence conditions. Stochastic
Process. Appl. 120, n9, 1629-1650, (2010)

(3) [BKS] B.Basrak, D.Krizmanic, and J.Seger. A
functional limit theorem for dependent sequences with infinite
variance stable limits. Ann.Probab. 40, N5 2008-2033 (2012).

(4) [BJMW] K.Bartkiewicz and Al. Stable limits for sums of
dependent infinite variance random variables. Probab.Theory
Relat.Fields, 150: 337-372, (2011).
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The following condition called the Anti-clustering
conditions (AC) which is familar from extreme value theory,
is relevant when dealing with convergence to α-stable process.

Sufficient Anti Clustering Condition (AC)

lim
k→+∞

lim sup
n→+∞

[n/k]∑
j=2

n Pµ (|Z1| > ε an , |Zj | > ε an) = 0, ∀ ε > 0.

Such conditions are assumed in the above papers, namely
known as : condition D′ of R.Davis, condition (x) of Denker
and Jakubowski.
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Necessary Anti Clustering Condition (NAC)

A neccessary Anti clustering condition is described by the following
condition: ( Condition (3.19) in [M.Tyran-Kaminska])

lim
n→+∞

Pµ
(

max
2≤j≤r(n)

|Zj | > ε an | |Z1| > ε an

)
= 0 . r(n) = o(n)
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In the previous we discussed spectral gap properties and
compared them to mixing properties.

Now, once this correspondance is understood, the only thing
to do, is to check the so called ”Anti clustring” conditions.
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Theorem

Let (Xn)n≥0 be an irreducible, aperiodic and positive recurrent
Markov chain with unique invariant probability measure µ. Let f
be such that Z1 = f (X1) is regularly varying of index α ∈ (1, 2)
and

∫
fdµ = 0.

1 Assume that the chain has a spectral gap.

2 If P|f | or P∗|f | belongs to Lα+β(µ) for some β > 0 then

1
an

S[nt](f ) = 1
an

∑[nt]
j=1 f (Xj) converges (under Pµ), in the

Skorohod topology to an α-stable process.

A CLT of this kind was obtained in 2009 by [ M.Jara,
T.Komorowski and S.Olla] ”Limits Theorems for additive
functionals of a Markov chain”. Ann. of Applied Probab.,
19(6): 2270-2300, (2009) using martingale approximation.
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The next result contains the case α ∈ (0, 1].

Theorem

Let (Xn)n≥0 be an irreducible, aperiodic and positive recurrent
Markov chain with unique invariant probability measure µ. Let f
be such that Z1 = f (X1) is regularly varying of index α ∈ (0, 2).
Assume that f is symetric under Pµ in the case α = 1.

1 Assume also that the chain has a spectral gap.

2 If for some η ≤ α, f ∈ Lη(µ) and P|f |η or P∗|f |η belongs to
L1+β(µ) for some β > 0 such that η > α

(1+β) , then

1
an

S[nt](f ) = 1
an

∑[nt]
j=1 f (Xj) converges (under Pµ), in the

Skorohod topology to an α-stable process.
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Example

For the reflected random walk, the Necessary Anti clustering
Condition (NAC) fail to holds.

A nice example of Markov chain in superdiffusion of energy in
a lattice dynamic was studied by [Jara,Olla,Komorowski].
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Example

One can also consider the following situation:
P = PT for some T > 0, where (Pt)t≥0 is continuous time
hyperbounded Markov process with invariant measure π.

In this case π will satisfy a log-Sobolev inequality with
I − 1

2 (P + P∗) as infinitesimal generator.

and we can look at numerical schemes ( Euler scheme) for
approximating hypercontractive diffusion processes

Note that in many situations the hypercontractivity property
is preserved.
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