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Gaussian random field

Definition
Given any set T , we call a Gaussian random field indexed by T any
collection of Gaussian random variables (Xt)t∈T such that any linear
combination of these is also a Gaussian random variable.
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Fractional Brownian fields

Definition
Given a metric space (E , d) and H > 0, we call an H-fractional Brownian
field indexed by E any Gaussian field (Xt)t∈E such that

∀t ∈ E , EXt = 0
∀s, t ∈ E , E(Xs − Xt)

2 = [d(s, t)]2H

If we consider E = R the classical fractional Brownian motion meet
the definition.
Such fields enjoy nice properties like stationary increments regarding
the isometry group of E and often local H−self similarity.
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Examples of index sets (E,d)

Rd , or any Hilbert space,

for 0 < H ≤ 1,

Sd ,

for 0 < H ≤ 1/2,

a discrete metric space (with a graph structure for example),
a Riemannian manifold.

Alas the existence of fractional Brownian fields depends on the space
(E , d) and is in general not easy to check.
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A precision

The above definition is not enough to guaranty unicity (in law) of the
field. Indeed for any centred Gaussian variable N, if (Xt) is an
H-fractional Brownian field, then so is (Xt + N).

We can choose an arbitrary origin point O ∈ E and ask that
XO = 0 a.s. . The covariance is then

EXsXt = 1/2
(
d2H(O, s) + d2H(O, s)− d2H(s, t)

)
and since the field is Gaussian it is unique in law.
We will work with one of those fields from now on.
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The existence problem

Because an H-fractional Brownian field is a Gaussian field, it exists if
and only if its covariance is a positive definite kernel. Schoenberg’s
theorem implies that it is the case if and only if d2H is a kernel of
negative type, that is to say

Definition
for all n ∈ N∗,P1 · · ·Pn ∈ E and c1, · · · , cn such that

∑n
i=1 ci = 0,

n∑
i ,j=1

cicjd2H(Pi ,Pj) ≤ 0.

Observe that the origin O have disappeared. Furthermore one can
check that all the fractional Brownian fields exists at once.
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Fractional exponent of a metric space

Theorem (Gangolli 67)
Given a metric space (E , d), there exists 0 ≤ HE ≤ ∞ such that

d2H is of negative type ⇔ H ≤ HE .

Idea of proof : xα is a Bernstein function for 0 < α ≤ 1.

Examples :
HRd = 1, HHilbert = 1,
HHd = 1/2 (existence via direct Lévy-Chentsov geometrical
construction) ,
Hellipsoid < Hsphere = 1/2,
For any Riemannian manifold M with at least one point of strictly
positive curvature HM < 1.
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Lévy Khinchin formula

On symmetric spaces G/K one can use harmonic analysis to
characterise continuous kernels of negative type.
It gives a characterisation of the continuous K -invariants kernels ψ of
negative type on G

ψ(x) = Q(x) +
∫

[1− Reω(x)] dµ(ω),

which is not very practical in general.
If G is compact Gangolli gave a criterion in term of sign of L2 scalar
product with elementary spherical functions, and derived HSd = 1/2.
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The result

Theorem
For all H > 0, there exists no fractional Brownian motion indexed by
S1×]0, ε[ endowed with its geodesic distance. In other terms,
HS1×]0,ε[ = 0.

The results holds for any metric space with a subset isometric to
S1×]0, ε[, such as S1 × N with N any Riemannian manifold.

Other examples of metric space with fractional exponent equal to 0
are quaternionic hyperbolic spaces and Rn endowed with the norms
(
∑n

i=1(xi)
q)1/q for n ≥ 3, q > 2.
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Sketch of the proof

Let us call any tuple (P1, · · · ,PN) in a metric space together with
coefficients (c1, · · · , cN) such that

∑N
i=1 ci = 0 a configuration of

points.
We will exhibit for all H > 0 a sequence (PN

1 , · · · ,PN
N ), (cN

1 , · · · , cN
N )

of configurations of points in the cylinder such that

lim
N→∞

N∑
i ,j=1

cN
i cN

j d2H(PN
i ,PN

j ) = +∞,

which will prove that d2H is not a kernel of negative type.
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A configuration on the circle

Let us consider a circle of perimeter 1, parametrized by arc length, and
take the points (Pi)

4N
i=1 of coordinates (i/4N)4N

i=1, together with the
coefficients ci = (−1)i . We are interested in

AN :=
4N∑

i ,j=1
cicj [dS1(Pi ,Pj)]

2H .

Lemma

AN ∼
N→∞

C(H)N1−2H
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Duplicating the circle configuration, 1/2

Consider the cylinder S1 × R with d its classical geodesic distance.
Take 8N points (Pi)

8N
i=1 such that (Pi)

4N
i=1 = (i/4N, 0)4N

i=1 and
(Pi+4N)

4N
i=1 = (i/4N, zN)

4N
i=1, with zN > 0, and set again ci = (−1)i .

We call

CN =
8N∑

i ,j=1
cicj [d(Pi ,Pj)]

2H

=
4N∑

i,j=1
cicj [d(Pi ,Pj)]

2H +
8N∑

i,j=4N+1
cicj [d(Pi ,Pj)]

2H

+
4N∑
i=1

8N∑
j=4N+1

cicj [d(Pi ,Pj)]
2H +

8N∑
i=4N+1

4N∑
j=1

cicj [d(Pi ,Pj)]
2H

=2AN + 2BN(zN)
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Duplicating the circle configuration, 2/2

Lemma
∀ 0 < α1 < α2, ∃ uN → 0, ∀ zN > 0 such that

zN = o (N−α1)

N−α2 = o (zN)

then
BN(zN) =

H
4H−1 + uN .
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Mulitiplying the circle configuration, 1/2

We choose 0 < β < γ < 1 and consider the bNβc+ 1 circles at
heights k

Nγ for k ∈ {0, · · · , bNβc}.
We put on the k-th of these circles 4N points (Pk

i )
4N
i=1 of coordinates(

i/4N, k
Nγ

)4N

i=1
, associated to our usual coefficients ck

i = (−1)i .
We now focus on

QN =

bNβc∑
k,l=0

4N∑
i ,j=1

cicj d2H(Pk
i ,P l

j )

=
(
bNβc+ 1

)
AN +

bNβc∑
k,l=0,k 6=l

BN
(
zk,l

N

)
,

with zk,l
N = |k−l |

Nγ .

Nil Venet (MIT) There are no fractional Brownian fields indexed by the cylinder15 Octobre 2014 15 / 18



Mulitiplying the circle configuration, 2/2

Applying our Lemma we get

QN =
(
bNβc+ 1

)
AN +

bNβc∑
k,l=0,k 6=l

H
4H−1 + o(1)

=
(
bNβc+ 1

)
AN +

bNβc
(
bNβc − 1

)
2

( H
4H−1 + o(1)

)

Recall that AN ∼
N→∞

C(H)N1−2H , therefore if we choose β > 1− 2H we
obtain

QN ∼
N→∞

bNβc
(
bNβc − 1

)
2

( H
4H−1

)
−→

N→∞
+∞ as we wanted.
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