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Abstrat. � The objet of this paper is to desribe an expliit two�parameter family

of logarithmi �at onnetions over the omplex projetive plane. These onnetions

have dihedral monodromy and their polar lous is a presribed quinti omposed of a

oni and three tangent lines. By restriting them to generi lines we get an algebrai

family of isomonodromi deformations of the �ve�puntured sphere. This yields new

algebrai solutions of a Garnier system. Finally, we use the assoiated Riati one�

forms to onstrut and prove the integrability (in the transversally projetive sense)

of a subfamily of Lotka�Volterra foliations.

Résumé. � Le but de et artile est de dérire une famille expliite à deux paramètres

de onnexions logarithmiques plates au dessus du plan projetif omplexe. Ces on-

nexions sont à monodromie diédrale et leur lieu polaire est une quintique presrite,

omposée d'une onique et de trois droites tangentes. Par restrition aux droites

génériques, on obtient alors une famille algébrique de déformations isomonodromiques

de la sphère à inq trous. Cei livre de nouvelles solutions algébriques d'un système

de Garnier. En�n, nous utilisons les formes de Riati assoiées à es onnexions

pour onstruire et montrer l'intégrabilité (au sens transversalement projetif) d'une

sous-famille de feuilletages de Lotka�Volterra.
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1. Introdution

In this setion we desribe the main result of this paper, namely an expliit

onstrution of a two�parameter family of logarithmi �at onnetions over the

omplement of a partiular quinti urve in P2
C. The restrition of any element

of this family to generi lines in the projetive plane gives a isomonodromi

deformation over the �ve puntured sphere, to whih we an assoiate an al-

gebrai solution of some Hamiltonian system of partial di�erential equations,

namely the Garnier-2 system.

1.1. Topology of the omplement of a partiular plane quinti. �

In this paper, we onern ourselves with setting up a two�parameter family of

logarithmi �at sl2(C)�onnetions over P
2
with a spei� polar lous, namely

a quinti urve Q omposed of a irle and three tangent lines. More preisely,

in homogeneous oordinates [x : y : t], Q is de�ned, up to PGL3(C) ation, by
the equation

xyt(x2 + y2 + t2 − 2(xy + xt+ yt)) = 0 .

Before stating our main result, let us speify what we are looking for: we

want to �nd a family of rank two logarithmi �at onnetions over P2
with

polar lous equal to some small degree urve and "interesting monodromy".

We will show that it is possible to do so with the quinti Q de�ne above.

Definition 1.1. � We say that the monodromy representation assoiated

with a rank two logarithmi �at sl2(C)�onnetion over P2 − Q is non�

degenerate if

� its image forms an irreduible subgroup of SL2(C) ;
� its loal monodromy (see De�nition 2.3) around any irreduible ompo-

nent of Q is projetively non�trivial (i.e is non-trivial in PSL2(C)).

In order to establish the existene of suh representations, we use the fol-

lowing result by Degtyarev.

Proposition 1.2. � [Degtyarev, 1999 [6℄℄ The fundamental group Γ of

the omplement of a smooth oni and three tangent lines in P2
admits the

following presentation:

Γ ∼= 〈a, b, c | (ab)2(ba)−2 = (ac)2(ca)−2 = [b, c] = 1〉 .

More preisely, Degtyarev proves that we an take a (resp. b, c) to be a

loop realising the loal monodromy (see De�nition 2.3) around the oni C :=
(x2 + y2 + t2 − 2(xy + xt + yt) = 0) (resp. the lines (y = 0), (x = 0)), as
illustrated in the left�hand side of Fig. 1. Also note that the fundamental

group of the intersetion of P2 − Q with any generi line is isomorphi to the

free group F4 := 〈d1, . . . , d5 | d1 . . . d5 = 1〉; the Lefshetz hyperplane theorem
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Figure 1. Fundamental group of the omplement of the quinti Q
in P2

and restrition to a generi line.

(see [17℄, Theorem 7.4) tells us that the natural morphism τ : F4 → Γ is onto.

Moreover we know from the expliit Van Kampen method given in Subsetion

4.1 of [6℄ that the group Γ an be omputed by taking the four free generators

of the fundamental group of the intersetion of P2−Q with any generi line and

adding some braid monodromy relations. Thus, if we hose a line going through

the base point used to de�ne a, b and c then τ is given (up to a permutation of

the di) by (see the right�hand side of Fig. 1):

d1 7→ b

d2 7→ a

d3 7→ bab−1

d4 7→ c

d5 7→ (abac)−1 .

In partiular, any non�degenerate representation ρ of Γ must satisfy

ρ(a), ρ(b), ρ(c), ρ(abac) 6= ±I2 .

Proposition 1.3. � The only (up to onjugay) family of non�degenerate

representations of Γ into SL2(C) is as follows:

ρu,v : a 7→
(

0 1
−1 0

)

, b 7→
(

u 0
0 u−1

)

, c 7→
(

v 0
0 v−1

)

, for u, v ∈ C∗ .

1.2. Main results. � The ore of this paper will be devoted to proving the

following theorem, in whih we expliitly onstrut the announed family of

rank two logarithmi �at onnetions.
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Theorem A. � There exists an expliit two�parameter family ∇λ0,λ1 of log-

arithmi �at onnetions over the trivial rank two vetor bundle C2 × P2 → P2

with the following properties:

(i) the polar lous of ∇λ0,λ1 is equal to the quinti Q ∈ P2
and as suh does

not depend on λ0, λ1 ∈ C;

(ii) the monodromy of ∇λ0,λ1 is onjugated to ρu,v with u = −e−iπλ0
and v =

e−iπλ1
. It is a virtually abelian dihedral representation of the fundamental

group Γ := π1(P
2 −Q) into SL2(C) whose image is not Zariski�dense.

The onnetion ∇λ0,λ1 is given in some (see Subsetion 2.1) a�ne hart C2
x,y ⊂

P2
by:

∇λ0,λ1 = d− 1

2(x2 + y2 + 1− 2(xy + x+ y))
(λ0A0 + λ1A1 +A2) ,

where

A0 :=

(

2(x − 1)ydx + (x2 + x(y − 2) − y + 1)x dy
y

2(2x − y + 2)ydx + (2x2 + y(x − y + 3) − 2)x dy
y

−2y2dx + (x + y − 1)x2 dy
y

−2(x − 1)ydx − (x2 + x(y − 2) − y + 1)x dy
y

)

A1 :=

(

(x2 + (x − 1)(y − 1))y dx
x

+ 2(x − 1)xdy (x2 + y(x − y + 3) − 2)y dx
x

+ 2(2x − y + 2)xdy

−(x + y − 1)y2 dx
x

− 2x2dy −(x2 + (x − 1)(y − 1))y dx
x

− 2(x − 1)xdy

)

A2 :=

(

−(x + y + 1)ydx − (x2
− x(y + 2) − y + 1)x dy

y
−2(x − y + 3)ydx − (x2

− 2y(x + 1) + 1)x dy
y

0 (x + y + 1)ydx + (x2
− x(y + 2) − y + 1)x

dy
y

)

.

Remark 1.4. � Note that the existene, and uniqueness up to gauge trans-

formation, of suh a family of onnetions follows from Proposition 1.3 and

the lassial Riemann�Hilbert orrespondene. The original part of this work

resides in the fat that we give a onstrutive proof of this result; in partiular

this allows us to desribe the assoiated algebrai Garnier solution.

Sine P2
is the symmetri produt Sym2(P1) one has a natural two�fold

rami�ed overing π : P1 × P1 2:1−−→ P2
whih pulls the quinti Q bak onto

the subset D ⊂ X := P1 × P1
omposed of the six lines u0, u1 = 0, 1,∞

(for some pair (u0, u1) of projetive oordinates on X) and of the diagonal ∆
while ramifying over the latter (see Subsetion 2.1 for more details). As we

are aiming at dihedral monodromy, a natural idea to prove Theorem A is to

de�ne a family of rank one logarithmi �at onnetions over X with in�nite

monodromy around D \ ∆ and to push it forward using π to get a family of

suh onnetions over P2 − Q with monodromy of (generially) in�nite order

around the three lines in the quinti and of projetive order two at the oni

C. This is exatly what we will do in Setion 2.

Representations of fundamental groups of quasi-projetive varieties in

SL2(C) have been lassi�ed mainly by Corlette and Simpson [4℄. One im-

portant lass of suh representations is that of those fatoring through a

urve.
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Definition 1.5. � [4, 15℄ We say that a representation ρ : Γ → SL2(C) fa-
tors through a urve if there exists a omplex projetive urve C, a divisor

δ ⊂ C, an algebrai mapping f : P2 − f−1(δ) → C − δ and a representation ρ̃
of the fundamental group of C − δ into PSL2(C) suh that

(i) f−1(δ) ontains Q, therefore there exists a natural group homomorphism

m : π1(P
2 − f−1(δ)) → Γ;

(ii) the diagram

π1(C − δ)

ρ̃
((P

PP
PP

PP
PP

PP
P

π1(P
2 − f−1(δ))

f∗
oo

P◦ρ◦m

��

PSL2(C)

ommutes, where P is the natural morphism SL2(C) → PSL2(C).

Indeed, representations admitting suh a fatorisation an be obtained

through pullbak from the monodromy of some logarithmi �at onnetion

on a urve. We prove that this is not generially the ase for our family of

onnetions.

Theorem B. � The monodromy representation of the onnetions ∇λ0,λ1 in-

trodued in Theorem A fators through a urve if and only if there exists

(p, q) ∈ Z2 \ {(0, 0)} suh that pλ0 + qλ1 = 0, i.e if and only if [λ0 : λ1] ∈ P1
Q.

Remark 1.6. � Note that our hoie of this partiular quinti is not arbi-

trary: work in progress [10℄ using Degtyarev's aforementioned paper suggests

that representations of the omplement of most quintis in the projetive plane

are either degenerate or fator through a urve.

1.3. Isomonodromi deformations. � By restrition to generi lines in

P2
, we obtain a family (parametrized by (λ0, λ1)) of isomonodromi defor-

mations over the Riemann sphere with �ve pairwise distint puntures P1
x \

{0, 1, t1, t2,∞}, whose monodromy is given in Table 1, where x is a well hosen

projetive oordinate on P1
and t1, t2 are two independent variables (well de-

�ned up to double overing) orresponding to the intersetion of the line with

the oni C. Sine this family of onnetions is algebrai we get a two�parameter

family of algebrai solutions of the isomonodromy equation assoiated with suh

deformations, namely the following Garnier system:

{

∂tkpi = −∂qiHk

∂tkqi = ∂pi
Hk

i, j = 1, 2 , (1)

where (pi, qi)i are algebrai funtions of t1, t2 and H1, H2 are expliit Hamil-

tonians given in Proposition 3.3 (see also [8, 16℄). More preisely if one sets
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Sq := q1 + q2, Pq := q1q2, St := t1 + t2 and Pt := t1t2 one has the following

relations:

{

(λ0 − 1)2λ2
1St = −F (Sq, Pq)

(λ0 − 1)2Pt = −(λ0 + λ1 − 1)2P 2
q

; (2)

where:

F (Sq, Pq) =(λ0 − λ1 − 1)(λ0 + λ1 − 1)3P 2
q

+ (λ0 − 1)2(λ0 + λ1 − 1)2(2Pq − 2PqSq + S2
q − 2Sq)

+ (λ0 − 1)3(λ0 + 2λ1 − 1) .

These solutions generalise the two parameter family known for the Painlevé

VI equation (see Subsetion 3.1) and the omplex surfae assoiated with the

graph of (t1, t2) 7→ (Sq, Pq) is rational.

x = 0 x = 1 x = t1 x = t2 x = ∞
(

a1 0
0 a−1

1

) (

−a0 0
0 −a−1

0

) (

0 1
−1 0

) (

0 a20
−a−2

0 0

) (

a0a
−1
1 0
0 a−1

0 a1

)

Table 1. Monodromy on a generi line; here aj = exp(−iπλj) for

j ∈ {0, 1}.

1.4. Lotka�Volterra foliations. � One last fat worth noting is that sine

∇ is a �at sl2(C)�onnetion on a trivial bundle, there exist three meromorphi

one�forms α0, α1 and α2 (given in Theorem A) suh that

∇ = d + Ω , where Ω :=

(

α1 α0

−α2 −α1

)

satis�es dΩ = Ω ∧ Ω .

In partiular, sine dα2 ∧ α2 = 0 one obtains a family of transversally proje-

tive degree two foliations over P2
(see [15℄ and Setion 4; note that this family

is therefore integrable in the Casale�Malgrange sense [2℄) with invariant lous

ontaining the quinti Q. We show that these are onjugate to a family of

Lotka-Volterra foliations over C3
[18,19℄; namely given three omplex parame-

ters (A,B,C), the odimension one foliation assoiated with the one�form over

C3
, with oordinates (x, y, t):

ω0 := (yVt − tVy)dx + (tVx − xVt)dy + (xVy − yVx)dt ,

where:

Vx := x(Cy + t), Vy := y(At+ x) and V t := t(Bx + y) .
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Theorem C. � The foliation de�ned by the meromorphi one�form α2 is

equal to the foliation over P2
assoiated with a Lotka�Volterra system with

parameters

(A,B,C) =

(

λ1

λ0
,

−λ0

λ0 + λ1
,
−(λ0 + λ1)

λ1

)

.

Conversely, any degree two foliation whose invariant lous ontains the quinti

Q is equal to one of the above form.

One an see from Theorem C that this family of foliations is governed by

the parameter λ0/λ1; there exists a one�parameter family of onnetions orre-

sponding to any given foliation (see also Subsetion 4.4 in [15℄). We then prove

that this gives an example of a family of foliations with algebrai invariant

urves of arbitrarily high degree (see also [14℄).

Aknowledgements. � The author would like to thank both Serge Can-

tat and Frank Loray for their support and guidane in writing this paper.

Gaël Cousin, Karamoko Diarra and Valente Ramirez Garia Luna ontributed
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ious topis. Speial thanks to Thiago Fassarella for the interest he took in
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was provided by the Université de Rennes 1, the Éole normale supérieure de

Rennes and the Centre Henri Lebesgue.
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2. Proof of Theorem A

In this setion we onern ourselves with setting up a partiular �bre bundle

over the projetive plane P2
, and then endowing it with a family of logarithmi

�at onnetions satisfying the onditions of Theorem A.

2.1. A rank two �bre bundle. � Start by onsidering the omplex mani-

fold X := P1 × P1
and de�ne the following involution:

η̃ : X → X

(u0, u1) 7→ (u1, u0) .

The ation of η̃ gives us a two�fold rami�ed overing of P1 × P1
over the

projetive plane P2
, i.e the �bres of the morphism

P1 × P1 −→ P2

([u0
0 : u1

0], [u
0
1 : u1

1]) 7→ [s : p : t] := [(u0
0u

1
1 + u1

0u
0
1) : u

0
0u

0
1 : u1

0u
1
1] .
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are the orbits under η̄. However, for the purpose of this paper, we will ompose

this mapping with the linear projetive transformation of P2
given by:

[s : p : t] 7→ [p+ t− s : p : t] .

This means that we will now work in the homogeneous oordinates x := p+t−s,
y := p and t. We get a two�fold rami�ed overing π : X → P2

that rami�es

along the diagonal ∆ := (u0 = u1) ⊂ X and sends it onto the oni:

(C) x2 + y2 + t2 = 2(xy + xt+ yt) .

Now onsider the rank two �bre bundle E over the projetive plane assoi-

ated with the loally free sheaf

E := OP2 ⊕OP2(−1) .

Let e+ be some global nonvanishing holomorphi setion of E (orresponding to

the OP2
part of the above deomposition) and e− be some global meromorphi

setion linearly independent from e+ (and so orresponding to OP2(−1)) with
assoiated (zeroes and poles) divisor equal to −L∞, where L∞ is the line "at

in�nity" (t = 0).
Let us ask ourselves the following question: what does the pullbak sheaf

F := π∗E look like ? For any open set U ⊂ X we have F(U) = E(π(U)), whih
implies that F is a rank two loally free sheaf induing a rank two �bre bundle

F → X with two global setion: one nonvanishing holomorphi e1 := π∗e+ and

one meromorphi e2 := π∗e−. Sine π does not ramify over L0
∞ := (u0 = ∞)

nor L1
∞ := (u1 = ∞), e2 has assoiated divisor −(L0

∞ + L1
∞); thus:

F ∼= OX ⊕OX(−1,−1) .

To better understand the bundle F , start by onsidering the rank two triv-

ial bundle E0 := C2 × X → X over X ; it has two independent (onstant)

holomorphi global setions f1 ≡ (1, 0) and f2 ≡ (0, 1). De�ne the following

involution:

E0 → E0

(u0, u1, (Z1, Z2)e1,e2) 7→ (u1, u0, (Z1,−Z2)e1,e2) .

First of all, note that its ation on the base oinides with that of the in-

volution η̄. One an then identify two global invariant setions of the bundle

E0:

� f1, whih is holomorphi;

� f̂2 := b·f2, where b is the global meromorphi funtion (u0, u1) 7→ u0−u1.

The loal expression b ·f2 de�nes a global meromorphi setion with assoiated

divisor ∆− (L0
∞ +L1

∞). The OX�module spanned by the setions f1 and f̂2 is

isomorphi to the rank two loally free module F (by mapping f1 to e1 and f̂2 to
e2) and as suh de�nes a rank two vetor bundle overX isomorphi to F . More
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preisely, one goes (loally) from E0 to F using the following transformation

(whih is trivial on the base):

(

Z1

Z2

)

e1,e2

7→
(

Z1
Z2

u0−u1

)

e1,ẽ2

.

2.2. A rank one projetive bundle. � By quotient on the �bres (P(C2) =
P1
C), one an assoiate to both vetor bundles E0 and E rank one projetive

bundles P1 × X and P(E). We an desribe the ation of η on the former as

follows:

η : P1 × P1 × P1 → P1 × P1 × P1

(u0, u1, [Z1 : Z2]) 7→ (u1, u0, [Z2 : Z1]) ;

or, in the a�ne hart "z = Z1

Z2
", (u0, u1, z) 7→ (u1, u0, 1/z).

One goes from P1 × X to P(E) through the following invariant rational

funtions:











s = u0 + u1

p = u0u1

w := (u0 − u1)
z + 1

z − 1

;

here (s, p) gives us loal oordinates over the base and w does the same in the

�bres. We will use this projetive point of view throughout this paper as it

allows for easier omputations in the long run. It will also allow us to de�ne

an interesting family of Lotka�Volterra foliations in Setion 4.

2.3. Logarithmi �at onnetions. � Start by endowing the trivial rank

two vetor bundle E0 → X with the following logarithmi �at onnetion :

∇0 := d +
1

2

(

ω0 0
0 −ω0

)

,

where u0, u1 are projetive oordinates on the base X and

ω0 := λ0

(

du0

u0
− du1

u1

)

+ λ1

(

du0

u0 − 1
− du1

u1 − 1

)

,

with (λ0, λ1) ∈ C2 \ {(0, 0)}. This onnetion has singular lous equal to six

lines in X (if λ0λ1(λ0 +λ1) 6= 0) and naturally gives rise to a Riati foliation,

de�ned by the following one�form over P(E0) = X × P1
:

R(∇0) := dz + ω0z where z is a projetive oordinate on the �bres.

Moreover one easily heks that

u0−u1

z
R(∇0) is an η�invariant logarithmi

one�form over P(F ), assoiated with some onnetion∇1 in the following sense:

if one has, in some loal hart

(u0 − u1)R(∇0) = dz + α2z
2 + 2α1z + α0 ,
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with α0, α1, α2 meromorphi one�forms (remark that here α2 and α0 are zero),

then one an set (in the same loal hart)

∇1 := d +

(

α1 α0

−α2 −α1

)

.

Sine the assoiated Riati form R(∇1) := (u0 − u1)R(∇0) is η�invariant one
an use ∇1 to get a logarithmi onnetion ∇2 on E with poles along (y = 0),
(x = 0), L∞ and C, the latter oming from the fat that π rami�es there. More

preisely, in the a�ne hart desribed in Subsetion 2.2 one has:

R(∇2) = dw +
1

2(x2 + y2 + 1− 2(xy + x+ y))

(

g(λ0, λ1, w, x, y)
dx

x
+ g(λ1, λ0, w, y, x)

dy

y

)

,

where

g(λ0, λ1, w, x, y) =− ((2λ0 + λ1)x+ λ1(y − 1))w2 + 2(y − x+ 1)xw

+ (2λ0 + λ1)x
3 − ((4λ0 + λ1)(y + 1) + 2λ1)x

2

− ((−2λ0 + λ1)y
2 + 2(2λ0 + λ1)y − (2λ0 + 3λ1))x

+ λ1(y
3 − 3y2 + 3y − 1) .

2.4. Trivialisations. � We wish to turn ∇2 into a onnetion on the trivial

bundle C2 × P2
; this an be done simply by blowing up the pole of any global

meromorphi setion of P(E) then ontrating a suitable divisor, however we

want to do so without disturbing the logarithmi nature of the onnetion ∇2.

Lemma 2.1. � There exists a birational mapping Φ : P(E) P1 × P2
onju-

gating R(∇2) to some Riati one�form, that is assoiated with a logarithmi

�at onnetion ∇ over the trivial bundle C2 × P2 → P2
.

Proof. � First remark that we have the following loal expression along (y =
0):

R(∇2)|(y=0)
= dw + f(x)(w + x− 1)(w − x+ 1)

dy

y
.

This tells us that the odimension one foliation assoiated with the one�form

R(∇2) has two singular points on eah �bre above (y = 0), namely at w =
±(x − 1). So in order to get a birationnal map P(E) P1 × P2

one an

proeed as follows:

� move one of the aforementioned singular loi (e.g (w = x− 1) ∩ (y = 0))
at (w = y = 0);

� blow up (y = 0)∩ (w = ∞) then ontrat the strit transform of the �bre

at (y = 0) on (w = y = 0). This latest step is ahieved (in our usual

a�ne hart) through the birational map (x, y, w) 7→ (x, y, w/y).

Expliitly in our loal hart, the mapping Φ is given by

Φ(w, x, y) = (y(w − x+ 1), x, y) .
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This means that we are blowing up (inside the total spae) a line in eah �bre

over (y = 0) then ontrating the strit transforms of said �bres thus resolving

the singularities of the global meromorphi setion e− desribed in the proof of

Theorem A; this shows that our mapping does indeed end in a trivial bundle

and sine we took are of ontrating divisors only on points of the singular

lous of the foliation assoiated with R(∇2) we get a logarithmi �at onnetion

over C2 × P2 → P2
.

In the end, one gets a onnetion ∇ = ∇λ0,λ1 on the trivial bundle C2 × P2

that almost satis�es ondition (i) in Theorem A, the only thing left to hek

being whether or not it is a sl2(C)�onnetion. Expliitly, the Riati form

assoiated with ∇ is given by (in the a�ne hart (t = 1)):

R(∇) = dw − 1

2(x2 + y2 + 1− 2(xy + x+ y))

(

f1(w, x, y)
ydx

x
− f2(w, x, y)

xdy

y

)

where

f1(x, y) =((2λ0 + λ1)x+ λ1(y − 1))yw2

+ 2((2λ0 + λ1 − 1)x2 + ((λ1 + 1)y − (2λ0 + 2λ1 − 1))x− λ1(y − 1))w

+ 2(2λ0 + λ1 − 1)x2 + ((−2λ0 + λ1 + 2)y + 2(2λ0 − 3))x

+ λ1(−y2 + 3y − 2)

and

f2(x, y) =(λ0(x− 1) + (λ0 + 2λ1)y)xw
2

+ 2((λ0 − 1)(x2 + 1) + ((λ0 + 2λ1 + 1)y − 2(λ0 − 1))x− (λ0 + 2λ1 − 1)y)w

+ 2(λ0 − 1)(x2 − 1) + (λ0 + 4λ1 + 2)yx− (λ0 + 2λ1)y
2 + (3λ0 + 4λ1 − 2)y .

Note that our birational transformation has "broken" the symmetry between

the two omponents f1 and f2.
We an expliitly ompute the residues of the onnetion ∇ = ∇λ0,λ1 and so

hek that it is indeed a sl2(C)�onnetion (see Table 2); note that the eigen-

values at (y = 0) have been slightly modi�ed beause we moved the singular

points of the assoiated foliation.

2.5. Monodromy representation. � To onlude the proof of Theorem A

one needs to ompute the monodromy representation of the onnetion ∇ and

see that it is, as announed, a dihedral representation of Γ into SL2(C). First,
let us prove a result announed in Subsetion 1.1.

Proposition 1.3. � The only (up to onjugay) family of non�degenerate

representations of Γ into SL2(C) is as follows:

ρu,v : a 7→
(

0 1
−1 0

)

, b 7→
(

u 0
0 u−1

)

, c 7→
(

v 0
0 v−1

)

, for u, v ∈ C∗ .
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Divisor Residue Eigenvalues

y = 0

(

− 1
2 λ0 +

1
2

2 (λ0−1)
y−x+1

0 1
2 λ0 − 1

2

)

±λ0 − 1

2

x = 0

(

−λ1(y−x+1)
2 (y−x−1)

2λ1

y−x−1

− λ1(y−x)
2 (y−x−1)

λ1(y−x+1)
2 (y−x−1)

)

±λ1

2

C
(

(2λ0+2λ1−1)(y−x+1)−4 λ0+2
4 (y−x−1) − 2 ((λ0+λ1−1)(y−x+1)−2λ0+2)

(y−x+1)(y−x−1)
(λ0+λ1)(y−x+1)(y−x−1)

8 (y−x−1) − (2λ0+2λ1−1)(y−x+1)−4λ0+2
4 (y−x−1)

)

±1

4

L∞

(− 1
2 λ0 − 1

2 λ1 0
λ0+λ1

2 (X−1)
1
2 λ0 +

1
2 λ1

)

±λ0 + λ1

2
(X = x/y)

Table 2. Residues for ∇.

Proof. � Let ρ be suh a representation; sine Im(ρ) must be non�abelian,

either C := ρ(c) or B := ρ(b) does not ommute to A := ρ(a), say B. Then

(AB)2 = (BA)2 and so (AB)2 ommutes to the non�abelian subgroup spanned

by A and B in PSL2(C), therefore (AB)2 must be equal to εI2 for some

ε ∈ {−1, 1}. This means that AB is diagonisable with eigenvalues in either

{−1, 1} (if ε = 1) or {−i, i}. In the former ase, AB would be equal to ±I2
and so one would have AB = BA. Therefore, (AB)2 must be equal to −I2.

Up to onjugay, one an assume that A, B and C are of the form

A =

(

α β
−1 γ

)

, B =

(

µ κ
0 µ−1

)

and C =

(

τ χ
0 τ−1

)

.

Sine (AB)2 = −I2, AB = −B−1A−1
and so one must have

{

αγ + β = det(A) = 1
αµ = γµ−1 + κ

. (3)

We assumed the monodromy representation to be non�degenerate; this means

in partiular that ABAC = −B−1A−1AC = −B−1C must not be equal to

±I2, i.e B 6= ±C and so µ2 6= τ2.
Case 1: µ2 6= 1. In this ase, B is diagonalisable so it is possible (up to

onjugay) to assume κ = 0. Sine B ommutes to C, it follows that χ must

also be zero and τ2 6= 1. This implies that A does not ommute to C and so
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one gets







αγ + β = 1
αµ2 = γ
ατ2 = γ

. (4)

As τ2 6= µ2
, this fores α and γ to be zero, thus β must be one.

Case 2: µ2 = 1. Sine B is not projetively trivial, then κ must be nonzero.

The fat that B must ommute to C fores τ2 to be one and so one must also

have χ 6= 0. It is therefore impossible for A to ommute to C and so by a

similar reasoning to the one above, (AC)2 = −I2, thus one gets






αγ + β = det(A) = 1
αµ = γµ−1 + κ
ατ = γτ−1 + χ

, (5)

whih is equivalent to (sine µ2 = τ2 = 1)






αγ + β = det(A) = 1
α = γ + κµ
α = γ + χτ

, (6)

therefore κµ = χτ . This means that B = ±C and so ABAC = ±I2, whih
ontradit the non�degeneray ondition.

Remark 2.2. � This implies that any non�degenerate representation of Γ
will have a "sizeable" kernel; indeed reall that we have a natural two�fold

rami�ed overing π : P1 × P1 2:1−−→ P2
ramifying over the diagonal ∆. This

mapping yields a nonrami�ed overing π̃ : X − D
2:1−−→ P2 − Q and thus one

gets that π1(X −D) embeds into π1(P
2−Q) ∼= Γ as an index two subgroup. If

one denotes by P1
n the n puntured sphere, the projetion on the line (y = 0)

gives a �bration X − D → P1
3 with �bre P1

4. As the universal overing of P1
3

(namely the hyperboli plane H2
) is ontratible, the homotopy exat sequene

assoiated with this �bration yields:

0 = π2(P
1
3) → π1(P

1
4) → π1(X −D) → π1(P

1
3) → 0 .

In partiular, there is an injetive morphism from π1(P
1
4)

∼= F3, where Fr

denotes the free group over r generators, into π1(X−D); whih in turn implies

that the group Γ ontains a nonommutative free group.

Moreover the orbifold fundamental group Γorb
π assoiated with the rami�ed

overing π also ontains a free group; more preisely if we de�ne

Γorb
π := 〈a, b, c | (ab)2(ba)−2 = (ac)2(ca)−2 = [b, c] = a2 = 1〉

then π indues an embedding of the fundamental group of X minus six lines

into Γorb
π , i.e F2 × F2 →֒ Γorb

π . This is espeially relevant sine the projetive

representations Γ → PSL2(C) assoiated with the monodromy of the onne-

tions we will desribe in this paper fator through this orbifold fundamental

group.
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Now we will desribe the loal monodromy around irreduible omponents

of the polar lous. Let C be an irreduible urve ontained in the polar lous of

some logarithmi �at sl2(C)�onnetion∇ over P2
, with assoiated monodromy

representation ̺. Set a point p ∈ C suh that no other irreduible urve in the

polar lous of the onnetion passes through p; then if U is a su�iently small

analyti neighbourhood of p one gets:

π1(U \ C ∩ U) ∼= Z .

Let γ be any loop generating the above yli group; the onjugay lass of the

matrix ̺(γ) does not depend on the hoie of a base point for the fundamental

group. Indeed, if γ is hosen as above for some base point q and if q′ is some

other point in the omplement of the polar lous, then if one takes δ to be any
path between q′ and q, the loop δ · γ · δ−1

is an element of the fundamental

group of the omplement based at q′ whose monodromy is onjugate to ̺(γ).

Definition 2.3. � Using the notations above, de�ne the loal monodromy

of ∇ around C as the onjugay lass of the matrix ̺(γ).

For j = 0, 1 set aj := e−iπλj
; the monodromy assoiated with the onnetion

∇0 is as follows:

� around u0 = j (resp. u1 = j), j = 0, 1, it is the multipliation by aj
(resp. a−1

j );

� around u0 = ∞ (resp. u1 = ∞), it is the multipliation by a−1
0 a−1

1 (resp.

a0a1).

This is a omplete desription sine the fundamental group of the projetive

line minus six lines is isomorphi to F2 × F2 and is generated by loops going

around x, y = 0, 1 one.

The monodromy of the onnetion∇2 omes diretly from that of∇0 around

the three lines in its singular lous; more preisely we an expliitly ompute

(up to onjugay) its loal monodromy around:

� (y = 0):
(

a0 0
0 a−1

0

)

;

� (x = 0):
(

a1 0
0 a−1

1

)

;

� and L∞:

(

(a0a1)
−1 0

0 a0a1

)

.

However the monodromy of ∇2 around the oni C omes solely from the

rami�ation of the overing π. More preisely sine any path linking (u0, u1) ∈
X to (u1, u0) pushes bak as a loop on the quotient P2 = π(X) and sine any
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loal solution z of ∇0 satis�es z(u1, u0) =
1

z(u0, u1)
the monodromy group of

∇2 must ontain the following matrix:

(

0 1
1 0

)

.

Proposition 2.4. � The monodromy group of the onnetion ∇ is the sub-

group of the in�nite dihedral group

D∞ :=

{(

0 α
−α−1 0

)

,

(

β 0
0 β−1

)
∣

∣

∣

∣

α, β ∈ C∗

}

≤ SL2(C)

generated by the following three matries:

(

0 1
−1 0

)

,

(

−e−iπλ0 0
0 −eiπλ0

)

and

(

e−iπλ1 0
0 eiπλ1

)

.

Proof. � We know from Proposition 1.2 that the fundamental group of the

omplement of the singular lous of ∇ in P2
has the following presentation:

Γ = 〈a, b, c | (ab)2(ba)−2 = (ac)2(ca)−2 = [b, c] = 1〉 ;

and that we an take a to be a loop whose lift is some path in X joining (x, y)
and (y, x) (for generi (x, y) ∈ X) and b (resp. c) to be a loop going around

(y = 0) (resp. (x = 0)) one (see Fig. 1). If we hoose a set of loal oordinates
in whih the monodromy matries of both b and c are diagonal (this is possible
beause the two loops ommute) then the monodromy of a only omes from

the overing π and is equal to:

(

0 1
−1 0

)

.

In onlusion, the monodromy representation is given by the following matries:

(

0 1
−1 0

)

,

(

−e−iπλ0 0
0 −eiπλ0

)

and

(

e−iπλ1 0
0 eiπλ1

)

,

whih are elements of D∞.

3. Algebrai Garnier solutions

In this setion we show that the onnetion ∇ indues an isomonodromi

deformation over the four and �ve puntured spheres. Furthermore we give

rational parametrisations of the assoiated algebrai Painlevé VI and Garnier

solutions and a desription of the assoiated monodromy representation.
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C

Figure 2. Speial lines.

3.1. Painlevé VI solutions. � It is well known [11,12℄ that isomonodromi

deformations of rank two sl2(C)�onnetions over the four puntured sphere

orrespond to solutions of the sixth Painlevé equation, namely the following

order two nonlinear di�erential equation:

d2q

du2
=
1

2

(

1

q
+

1

q − 1
+

1

q − u

)(

dq

du

)2

−
(

1

u
+

1

u− 1
+

1

q − u

)

dq

du

+
q(q − 1)(q − u)

u2(u− 1)2

(

α+ β
u

q2
+ γ

u− 1

(q − 1)2
+ δ

u(u− 1)

(q − u)2

)

,

where α, β, γ and δ are omplex�valued parameters.

Let us look at the onnetion indued by ∇ on the family of lines going

through P0 := (x = 0) ∩ L∞ (see Fig. 2) that are neither (x = 0) nor the line
at in�nity; these are the lines of the form (y = c) in the a�ne hart (x, y) from
Subsetion 2.1. Aording to Subsetion 2.4, this orresponds to studying the

isomonodromi deformation given by the following Riati forms, for generi y:

R(∇y) := dw − y

2x(x2 + y2 + 1− 2(xy + x+ y))
fy(x,w)dx ,
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where

fy(x,w) =(λ0(x− 1) + (λ0 + 2λ1)y)yw
2

+ 2((λ0 − 1)(x2 + 1) + ((λ0 + 2λ1 + 1)y − 2(λ0 − 1))x− (λ0 + 2λ1 − 1)y)w

+ 2(λ0 − 1)(x2 − 1) + (λ0 + 4λ1 + 2)yx− (λ0 + 2λ1)y
2 + (3λ0 + 4λ1 − 2)y .

From this isomonodromi deformation we produe algebrai solutions of the

Painlevé VI equation by adapting part of a paper by Hithin [11℄.

Proposition 3.1. � The family of algebrai solutions of the Painlevé VI

equation assoiated with the onnetions (∇λ0,λ1)λ0,λ1 is given by the funtions

q(u) = − λ1

2λ0 + λ1

√
u

and the parameters:

α =
(2λ0 + λ1)

2

2
, β = −λ2

1

2
, γ = 1/8 and δ = 3/8 .

Proof. � Let z be a parameter suh that z2 = y; then ∇y has poles at x =
(z±1)2, x = 0 and x = ∞. Up to Möbius transformation, one an assume that

these are in fat loated at s ∈ {0, 1, u(z),∞}, with:

u(z) =
z2 − 2z + 1

z2 + 2z + 1
=

(z − 1)2

(z + 1)2
.

It is then possible to ompute the relevant data assoiated with this family of

onnetions (see Table 3).

Let us now set

H :=
W0

x
+

W1

x− 1
+

W2

x− t
,

where the Wi are the residues from Table 3; then sine −W is diagonal and

equal to the sum W0 + W1 + W2, its lower left oe�ient is a degree one

polynomial in x, whose root an be expliitly omputed as a rational funtion

of z:

q(z) := − λ1

2λ0 + λ1

z − 1

z + 1
,

or as an algebrai funtion of u:

q(u) = − λ1

2λ0 + λ1

√
u .

One an then hek that this funtion u 7→ q(u) is indeed a solution of the sixth

Painlevé equation for the announed hoie of parameters.
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Pole Residue Eigenvalues

x = 0 W0 :=

(

−λ1(z
2+1)

2 (z2−1)
2λ1

z2−1

− λ1z
2

2 (z2−1)
λ1(z

2+1)
2 (z2−1)

)

±λ1

2

x = 1 W1 :=

(

(2λ0+2 λ1−1)z+2 λ0−1
4 (z+1)

(λ0+λ1−1)z+λ0−1
z2+z

− (λ0+λ1)z
2+λ0z

4 (z+1) − (2λ0+2 λ1−1)z+2 λ0−1
4 (z+1)

)

±1

4

x = t(z) W2 :=

(

(2λ0+2 λ1−1)z−2 λ0+1
4 (z−1) − (λ0+λ1−1)z−λ0+1

z2−z

(λ0+λ1)z
2−λ0z

4 (z−1) − (2λ0+2 λ1−1)z−2 λ0+1
4 (z−1)

)

±1

4

x = ∞ W :=

(

−λ0 − 1
2 λ1 +

1
2 0

0 λ0 +
1
2 λ1 − 1

2

)

±2λ0 + λ1 − 1

2

Table 3. Residues for ∇y .

3.2. Restrition to generi lines. � Let us now onsider the onnetion

indued by ∇ on generi lines in P2
, suh a line being given in our usual

a�ne hart by an equation of the form y = αx + β. We thus obtain an

isomonodromi deformation (∇α,β)α,β over the �ve puntured sphere; more

preisely if one hooses a parameter z suh that z2 = β(1 − α) + α then one

gets (after Möbius transformation) a family of logarithmi �at onnetions over

P1 \ {0, 1, t1, t2,∞}, where:

t1 = − α(z + 1)2

(α− 1)(α− z2)
and t2 = − α(z − 1)2

(α− 1)(α− z2)
.

The assoiated Riati forms are given by:

R(∇α,β) = dw +
a2(x)w

2 + a1(x)w + a0(x)

2x(x − 1)(x− t1)(x− t2)
dx
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where:

a2(x)

α(x − 1)(z2 − α)
=(λ0 + λ1)(α

2 − (z2 + 1)α+ z2)x2

+ (−λ1α
2 + (λ0(z

2 + 1) + 2λ1)α− (2λ0 + λ1)z
2)x

+ λ1(z
2 − 1)α

a1(x)

2
=(λ0 + λ1)(α

4 − 2(z2 + 1)α3 + (z4 + 4z2 + 1)α2 − 2(z4 + z2)α+ z4)x3

+ [−(2λ0 + 3λ1 − 1)α4

+ ((4λ0 + 4λ1 − 1)z2 + 4λ0 + 6λ1 − 1)α3

− ((2λ0 + λ1)z
4 + 2(4λ0 + λ1 − 1)z2 + (2λ0 + 3λ1))α

2

+ ((4λ0 + 2λ1 − 1)z4 + (4λ0 + 4λ1 − 1)z2)α

− (2λ0 + λ1 + 1)z4]x2

+ [2λ1a
4 − ((2λ0 − 1)z2 + (2λ0 + 6λ1 − 1))α3

+ ((λ0 − λ1)z
4 + 2(3λ0 + 2λ1 − 1)z2 + λ0 + 3λ1)α

2

+ ((2λ0 − 1)z4 + (2λ0 + 2λ1 − 1)z2)α]x

+ λ1(2(1− z2)α+ z4 − 1)α2

and

a0(x)

4α(α− 1)
=(λ0 + λ1 − 1)(1− α)(z2 − α)x2

+ (((λ0 − 1)(α− 2)− λ1)z
2 − λ1α

2 + (λ0 + 2λ1 − 1)α)x

+ λ1α(z
2 − 1) .

Using the expliit formulas given in Subsetion 2.4, we an expliitly ompute

the spetral data assoiated with these onnetions (see Table 4). To mirror

what we did in Subsetion 3.1, let us assume (up to a hange of basis) that the

residue at in�nity M is diagonal and set:

Ĥ :=
M0

x
+

M1

x− 1
+

Mt1

x− t1
+

Mt2

x− t2
;

then sine M does not depend on x, the lower left oe�ient of Ĥ must be a

degree two polynomial in x, say:

Ĥ2,1 =
c(t1, t2)(x

2 − Sq(t1, t2)x+ Pq(t1, t2))

x(x− 1)(x− t1)(x− t2)
, (7)

where Sq := q1 + q2 and Pq := q1q2, with q1, q2 some algebrai funtions of

(t1, t2).
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Pole Residue Eigenvalues

x = 0 M0 :=

(

−λ1(z
2−2α+1)

2 (z2−1) − 2λ1(α−1)
z2−1

−λ1(z
2−α)

2 (z2−1)
λ1(z

2−2α+1)
2 (z2−1)

)

±λ1

2

x = 1 M1 :=

(

− 1
2 λ0 +

1
2 − 2α(α−1)(1−λ0)

α2−z2

0 1
2 λ0 − 1

2

)

±1

2
(λ0 − 1)

x = t1 Mt1 :=

(

(2λ0−1)(z+1)+2λ1(α+z)
4 (z+1) − (α−1)(λ0+λ1α−1+(λ0+λ1−1)z)

(α+1)z+z2+α

λ0(z
2+(1+α)z+α)+λ1(z+α)2

4 ((α−1)z+α−1) − (2λ0−1)(z+1)+2λ1(α+z)
4 (z+1)

)

±1

4

x = t2 Mt2 :=

(

− (2λ0−1)(1−z)+2λ1(α−t)
4 (z−1)

(α−1)(λ0+αλ1−1−(λ0+λ1−1)z)
(α+1)z−z2−α

−λ0(z
2+(1+α)z+α)+λ1(z+α)2

4 ((α−1)z−α+1)
(2λ0−1)(1−z)+2λ1(α−z)

4 (z−1)

)

±1

4

x = ∞ M :=

(

− 1
2 λ0 − 1

2 λ1 0

− (λ0+λ1)α
2 (α−1)

1
2 λ0 +

1
2 λ1

)

±1

2
(λ0 + λ1)

Table 4. Residues for ∇α,β.

3.3. Rational parametrisations. � First remark that one an rewrite (7)

as follows:

x(x − 1)(x2 − Stx+ Pt)Ĥ2,1 = c(t1, t2)(x
2 − Sqx+ Pq) ,

where St = t1 + t2 and Pt = t1t2 are the elementary symmetri polynomials in

(t1, t2).

Lemma 3.2. � The parameters (α, z) introdued in Subsetion 3.2 give a ra-

tional mapping (P1)2 (P1)4 giving expliit expressions of (t1, t2, Sq, Pq),
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namely:

t1 = − α(z + 1)2

(α− 1)(α− z2)
,

t2 = − α(z − 1)2

(α− 1)(α− z2)
,

Sq =
λ0(α

2 − 2α+ z2)− λ1(1 + z2 + 2α)α+ α(2 − α)− z2

(λ0 + λ1 − 1)(α− z2)(α − 1)
,

Pq =
(λ0 − 1)(z − 1)(z + 1)α

(λ0 + λ1 − 1)(α− z2)(α− 1)
.

Proof. � Using Gröbner bases to eliminate the variable x one obtains a system

of equations of the following form:

{

(λ0 − 1)2λ2
1St = −F (Sq, Pq)

(λ0 − 1)2Pt = −(λ0 + λ1 − 1)2P 2
q

; (8)

where:

F (Sq, Pq) =(λ0 − λ1 − 1)(λ0 + λ1 − 1)3P 2
q

+ (λ0 − 1)2(λ0 + λ1 − 1)2(2Pq − 2PqSq + S2
q − 2Sq)

+ (λ0 − 1)3(λ0 + 2λ1 − 1) .

The disriminant ∆t of this system vanishes along 2 pairs of parallel lines in

P1
Sq

× P1
Pq
; namely:

(∆t = 0) = (α = 0) ∪ (x′ = 0) ∪ (α = ∞) ∪ (x′ = ∞) ⊂ P1
α × P1

x′

for some projetive oordinate x′
suh that z2 = αx′

. This expliit desription

of the two�fold rami�ed overing given by z allows us to parametrize (Sq, Pq)
as rational funtions of (α, z), hene onluding the proof.

We an now prove that we have indeed onstruted a family of algebrai solu-

tions for a Garnier system. More preisely, onsider the following Hamiltonian

system:

{

∂tkpi = −∂qi
Hk i, k = 1, 2

∂tkqi = ∂pi
Hk i, k = 1, 2

, (9)

where:

Hk := (−1)k
2H(tk, t3−k,p1,p2,q1,q2) +H(tk, t3−k,p2,p1,q2,q1)

2(q1 − q2)(t1 − t2)(tk − 1)tk
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with:

H(t1, t2,p1,p2,q1,q2)

p1q1(q2 − t1)
= p1q

3
1 + ((t1 + t2 + 1)p1 + (λ0 + λ1 − 1))q2

1

− ((t1 + t2 + t1t2)p1 − (2λ0 + 2λ1 − 1)(t1 + t2)− 2t2 + 2(λ0 − 1))
q1

2
+ (−(2λ0 − 1)t1t2p1 + 2(λ0 + λ1 − 1)t2 + 2λ0 − 1)t1 + 2(λ0 − 3)t2 .

Proposition 3.3. � Let q1, q2 be the algebrai funtions de�ned in Subsetion

3.2; then there exist two algebrai funtions p1(t1, t2) and p2(t1, t2) suh that

(q1, q2, p1, p2) is a solution of (9).

Proof. � Sine we know no rational parametrisation of (q1, q2) we onsider the
"symmetrised" system:



















∂tkSq = (∂p1 + ∂p2)Hk k = 1, 2
∂tkPq = (q2∂p1 + q1∂p2)Hk k = 1, 2
∂tkSp = −(∂q1 + ∂q2)Hk k = 1, 2

∂tkγ =
−1

(q1 − q2)2
((q1 − q2)(∂q1 + ∂q2) + (p1 − p2)(∂p1 + ∂p2))Hk k = 1, 2

,

where Sp := p1 +p2 and γ =
p1 − p2

q1 − q2
. To obtain this we �rst had to onsider

the variable δ := q1−q2 and then eliminate it using the fat that all expressions

obtained had even degree in δ and that δ2 = S2
q − 4Pq.

Assume that (p1, p2) are two algebrai funtions suh that (q1, q2, p1, p2) is a
solution of (9). Using the �rst two equations with k = 1 one then gets Sp and

γ as funtions of ∂t1Sq and ∂t1Pq whih in turn (see Lemma 3.2) are rational

funtions of (α, t), namely:

γ =− (λ0 + λ1 − 1)(α+ 1)(α− z2)2(α − 1)

2α(α− z)(α+ z)(z + 1)(z − 1)
,

Sp =
(α− z2)

2α(α− z)(α+ z)(z + 1)(z − 1)
Ŝp ,

with

Ŝp =(λ0 + 2λ1 − 1)α3

+ ((2λ0 + λ−2)z
2 − (3λ0 + λ1 − 3))α2

+ ((λ0 − 3λ1 + 1)α+ (λ0 − 1))z2 .

This ompletes the rational parametrisation of all relevant variables and allows

us hek that (Sq, Pq, Sp, γ) indeed satis�es the above system.

We an desribe more preisely the rational surfae parametrising q1 and q2
as follows. Using the equations linking (St, Pt) to (Pq, Sq) and Gröbner bases

one show that Sq is root of a degree four polynomial with oe�ients depending

on St, Pt (and thus on t1, t2) and that Pq an be omputed as a polynomial in
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St, Pt and Sq. Therefore, there exists a polynomial P ∈ C[X,T1, T2] of degree
four in its �rst variable suh that P (Sq, t1, t2) = 0 and so if one sets

Σ := {x, t1, t2 ∈ P1 |P (x, t1, t2) = 0}

then the projetion p : Σ → P1
t1

× P1
t2

is a fourfold rami�ed overing, whose

holonomy we an fully desribe.

Proposition 3.4. � The holonomy representation into S4 of the overing p
is trivial at t1 = t2 and is a double transposition at ti = 0, 1,∞ (i = 1, 2).

Proof. � Sine (Sq, Pq) is solution of a Garnier system, we know that this

overing an only ramify over ti = 0, 1,∞ (i = 1, 2) or t1 = t2. To better

understand the way it does, let us look into its holonomy representation, whih

is a mapping from the fundamental group G of the omplement of the rami�-

ation lous in P1 × P1
into the symmetri group S4. By expliitly fatorising

the polynomial P over all omponents of the possible rami�ation lous one

gets that:

� over ti = 0 (i = 1, 2) the polynomial has two double roots;

� over ti = 1 (i = 1, 2), the situation is the same

� over ti = ∞ (i = 1, 2), there is only one order four root;

� over t1 = t2 the polynomial has four simple roots (the overing doesn't

atually ramify there).

If one looks (for example) at the restrited polynomial P (Sq, t1, 7) one an

see that its disriminant has a double root at t1 = 1 and that the same is

true should one exhange the roles of t1 and t2; this means that the holonomy

around ti = 0, 1 is a double transposition. Moreover, it takes two elementary

transforms to turn the rami�ation at in�nity into two double roots with the

disriminant in Sq having a double root there. The holonomy being invariant

under birational morphisms, it is also a double transposition.

Corollary 3.5. � The omplex surfae Σ is rational.

Proof. � By setting t1 or t2 to any value distint from 0, 1,∞, one gets a

fourfold overing from some urve C onto P1
ramifying over 0, 1 and ∞. The

Riemann�Hurwitz formula yields that the urve C is of genus zero, meaning

that it is neessarily a rational urve. This proves that the surfae Σ is a

�bration over P1
with general �bre isomorphi to P1

and so is in fat rational

(see for example [13℄).

4. Lotka�Volterra foliations

In order to prove Theorem C, let us �rst de�ne the following notion (see [20℄).
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Definition 4.1 (Transversally projetive foliation). � Let M be a smooth

projetive omplex manifold; a odimension one foliation F on M (de�ned by a

Frobenius�integrable nonzero rational one�form ωF ) is said to be transversally

projetive if there exist two rational one�forms α, β over M suh that

d +

(

α β
ωF −α

)

de�nes a �at sl2(C)�onnetion over the rank two trivial bundle C2 ×M .

If one looks at the restrition ω of the Riati one�form R(∇) to (w = ∞)
one obtains a odimension one transversally projetive foliation F over the

projetive plane P2
; indeed, if

R(∇) = dw + ωw2 + 2αw + β

then

d +

(

α β
ω −α

)

is gauge�equivalent to ∇ and as suh is a �at sl2(C)�onnetion over C2 × P2
.

The one�form ω an be written in the a�ne hart C2
x,y ⊂ P2

desribed in

Subsetion 2.1 as:

ω = ((2λ0 + λ1)x+ λ1(y − 1))ydx− ((λ0 + 2λ1)y + λ0(x− 1))xdy

This foliation's invariant lous ontains the singular lous of ∇, namely the

quinti Q and has seven order one singularities, namely (in homogeneous o-

ordinates [x : y : t] hosen so that our usual a�ne hart orresponds to t = 1)
[0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 1], [λ2

1 : λ2
0 : (λ0 + λ1)

2], [1 : 1 : 0], [0 : 1 : 0] and

[1 : 0 : 0]. Also note that this foliation only depends on the quotient λ :=
λ0

λ1
;

indeed it is equivalent to:

((2λ+ 1)x+ y − 1)ydx− ((λ + 2)y + λ(x− 1))xdy = 0 .

Also note that every singular point of the above foliation lies on the quinti Q.

Now de�ne, given three omplex parameters (A,B,C), the Lotka-Volterra

vetor �eld over C3
(with oordinates x, y, t) as LV(A,B,C) := Vx∂x +Vy∂y +

Vt∂t, where:

Vx := x(Cy + t), Vy := y(At+ x) and V t := t(Bx + y) .

This system traditionally omes from the study of a "food hain" system with

3 speies preying on eah other in a yle. One an then [18, 19℄ onsider

the foliation de�ned by both LV(A,B,C) and the radial vetor �eld R :=
x∂x+ y∂y+ t∂t: it is the odimension one foliation over C3

assoiated with the

one�form

ω0 := (yVt − tVy)dx + (tVx − xVt)dy + (xVy − yVx)dt .
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Figure 3. Singular lous for the foliation F .

4.1. Proof of Theorem C. � To prove Theorem C, one needs only show

that the foliations de�ned by the one�forms ω and ω′
0 := ω0|t=1

are the same

in some a�ne hart. Eah of the aforementioned one�forms has four singular

points, namely

(0, 0) ,

(

1

B
, 0

)

, (0, A) and

(

A(C − 1) + 1

C(B − 1) + 1
,
B(A− 1) + 1

C(B − 1) + 1

)

for ω′
0

and

(0, 0) , (1, 0) , (0, 1) and

(

λ2
1

(λ0 + λ1)2
,

λ2
0

(λ0 + λ1)2

)

for ω .

We then submit ω′
0 to an a�ne hange of oordinates to send its �rst three

singular points onto (0, 0), (1, 0) and (0, 1). A neessary ondition for the two

forms to de�ne the same foliation is then that their fourth singularities be

equal; after omputation we �nd that one must have:

B(A(C − 1) + 1)

C(B − 1) + 1
=

λ2
1

(λ0 + λ1)2
(10)

and

B(A− 1) + 1

A(C(B − 1) + 1)
=

λ2
0

(λ0 + λ1)2
. (11)
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Solving the two above equations, one obtains a rational parametrisation of A
and C by B, namely:

A =
(B − 1)λ1

(2λ0 + λ1)B
and C = −2B(λ0 + λ1)

2 + λ0λ1

λ0λ1(B − 1)
.

A neessary and su�ient ondition for the two assoiated foliation to oinide

is that ω ∧ ω′
0 = 0; using this and the above parametrisation one gets that B

must be equal to − λ0

λ0 + λ1
and thus obtains the �rst par of Theorem C.

Conversely, diret omputation shows that any degree two foliation over P2

whose invariant lous ontains the quinti Q an be written in the a�ne hart

(s, p) as

((γ1 + 2γ2)x+ γ1(y − 1))ydx− ((2γ1 + γ2)y + γ2(x− 1))xdy

with γ1, γ2 ∈ C. In partiular, suh a foliation automatially omes from the

monodromy representation of one of our onnetions ∇λ0,λ1 , with λ0 = γ2 and
λ1 = γ1.

Remark 4.2. �

1. The relation ABC = 1 obtained in Theorem C an be seen intuitively as

oming from the order 3 symmetry of the quinti Q: indeed if one denotes

by J the homographi order 3 transform de�ned on P1
by

z 7→ − 1

1 + z

then one has

(A,B,C) =

(

λ1

λ0
, J

(

λ1

λ0

)

, J2

(

λ1

λ0

))

.

2. The two variables Lotka�Volterra system is usually de�ned as being fol-

lowing "prey�predator" di�erential system:

{

x′ = x(α + βy)
y′ = y(γ + δx)

,

to model an eosystem where x preys on y. However, the plane foliation
assoiated with this system annot be onjugate to the one assoiated

with ω as it has two double singular points whereas ω has seven simple

singularities. Thus this gives some form of justi�ation to the fat that we

hose to onsider a three variables system in this paragraph (as opposed

to the more "natural" two variables one).
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4.2. Invariant urves. � The invariant lous of the family of foliations

presented here does not have normal rossings, hene the Cerveau�Lins Neto

bound on the degree (deg(F) + 2, see [3℄) does not apply here. Furthermore

one may note that (for generi parameters λ0, λ1) the foliation F has simple

singularities at the tangeny lous of the oni C and the three invariant lines.

Moreover, we have the following result.

Proposition 4.3. � The foliation F admits, for λ0, λ1 ∈ Q, invariant alge-

brai urves of arbitrarily high (depending on λ0/λ1) degree.

Proof. � The setion (w = ∞) ⊂ P1×P2
that we used to de�ne our foliations

lifts through π : P1 × P1 2:1−−→ P2
(see Subsetion 2.1) to the setion (z = 1) of

the trivial bundle X × P1
(see Subsetion 2.2) and so the foliation itself lifts

(in our usual loal hart) to:

(F ′) λ0

(

du0

u0
− du1

u1

)

+ λ1

(

du0

u0 − 1
− du1

u1 − 1

)

= 0 .

If one looks at rational values of λ0 and λ1, one gets a foliation F with �nite

holonomy whih as a onsequene admits a rational �rst integral. Moreover, in

that partiular ase every leaf is an algebrai invariane urve and it is possible

to �nd these with arbitrarily high degree (for varying λ0, λ1). For example, if

λ0 = n ≥ 1 is a positive integer and if we set λ1 = 1 then a simple omputation

shows that the urve

(Cn) un
0 (u0 − 1)− un

1 (u1 − 1) = 0

on X is invariant under F ′
. An indution then shows that this urve is the

pullbak by π of a degree 2+n urve on P2
and so we get an invariant urve of

suh degree for the foliation F orresponding with the parameters (n, 1).

Remark 4.4. � Note however that this is a slightly weaker example than the

ones given in [14℄ as the loal type of our singularities depends on the parameter

λ0/λ1.

5. Proof of Theorem B

In this paragraph, we prove that our family of monodromy representations

annot be generially obtained through a pullbak method [8, 9℄ by showing

that it does not fator through a urve [4℄.

5.1. First ase: λ0 and λ1 are not linearly dependant over Z. �

Suppose that we have some omplex projetive urveC, a divisor δ = t1+. . .+tk
in C, an algebrai mapping f : P2 − f−1(δ) → C − δ and a representation ρ̃ of



28 ARNAUD GIRAND

the fundamental group of C − δ into PSL2(C) satisfying the onditions stated

in De�nition 1.5. In partiular, the diagram

π1(C − δ, x0)

ρ̃

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
π1(P

2 − f−1(δ))

P◦ρ◦m

��

f∗
oo

PSL2(C)

ommutes. Sine the rami�ed overing π : X
2:1−−→ P2

is unrami�ed between

X −D and P2 −Q, where D is the divisor in X made of the six lines u0, u1 =
0, 1,∞ and the diagonal∆ = (u0 = u1), then the fundamental group π1(X−D)
is realised as a subgroup of Γ. This means that if one sets φ := f ◦ π one has

suh a diagram:

π1(C − δ, x0)

ρ̃′

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
π1(X − φ−1(δ))

ρ′

��

φ∗
oo

PSL2(C)

.

Now let L be a generi horizontal line in X (i.e of the form (u1 = c), with
c 6= 0, 1,∞); sine f is algebrai the restrited map φ|L extends as a rami�ed

overing φL : L → C with topologial degree equal to some d ≥ 1. The line L
is isomorphi to P1

, so the Riemann�Hurwitz formula fores the genus of the

urve C to be equal to zero; as suh we an assume without loss of generality

that φL is a d�fold overing of the projetive line over itself. Moreover, one has

that φ∗
Lδ must ontain {0, 1, c,∞}.

The representation ρ̃′ must indue in�nite order monodromy about at least

one loop in C−δ, say γ0, or else all elements in the image of ρ would be of �nite

order. This means that M := ρ̃′(γ0) is a in�nite-order element in PSL2(C).
Let us assume that there are at least two distint elements γ and γ′

in the

�bre of (φL)∗ above γ0; then both ρ′(γ) and ρ′(γ′) must be powers of M . This

gives us a relation between words in the matries

(

a0 0
0 a−1

0

)

,

(

a1 0
0 a−1

1

)

and

(

a0a1 0
0 (a0a1)

−1

)

,

where aj = e−iπλj
. Sine generially λ0 and λ1 are not linearly dependant, this

is impossible; hene we have that the �bre (φL)
−1
∗ (γ0) may only ontain one

element. This implies that φL rami�es totally over (at least) three points in C
and so the Riemann�Hurwitz formula yields that φL must be one�to�one.

Let u ∈ P1
and set hu ∈ PSL2(C) to be the Möbius transform sending the

rami�ation lous of φ(u1=u) onto 0, 1,∞; up to omposing it with (u0, u1) 7→
(hu1(u0), u1) we an assume that φ is exatly the �rst projetion pr1 : X → P1

.

However if one looks at the restrition of φ to some vertial line then one
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should again generially obtain in�nite loal monodromy at three points, whih

is impossible with pr1, thus onluding the proof.

5.2. Seond ase: there exists (p, q) in Z2 \ {(0, 0)} suh that pλ0 +

qλ1 = 0. � We an assume that at least one of

λ0

λ1
or

λ1

λ0
is a rational number,

therefore the transversally projetive foliation F introdued in Setion 4 has

�nite monodromy and so admits some rational �rst integral g : P2 → P1
. Using

Subsetion 4.4 in [15℄, one dedues that the transversally projetive struture

(β, α, ω) assoiated with F is equivalent to one of the form (β̃, 0, dg) with the

following relations (see [15℄, Subsetion 4.1):

β̃ ∧ dg = 0 and dβ̃ = 0 .

The �rst relation implies that β̃ must be of the form β̃ = fdg for some rational

f : P2 → P1
; using the seond relation one then gets that

df ∧ dg = 0 . (12)

Using standard results from birational geometry (see for example Theorem II.7

in [1℄) one obtains that there exists a omplex surfae M and a �nite sequene

b : M → P2
of blow�ups suh that g := g ◦ b is a holomorphi funtion on M .

Moreover, if we set f := f ◦ b then we must have

df ∧ dg = 0 . (13)

It then follows from Stein's fatorisation theorem that there exists a omplex

urve C, a rami�ed overing r : C → P1
and a �bration φ : M → C with

onneted �bres suh that the following diagram

M

g

��

φ
// C

r
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

P1

ommutes. This means that loally on any su�iently small analyti open

set U the overing r gives an orbifold oordinate x on the urve C and there

exists a biholomorphism h between U ×F and φ−1(U), where F is a onneted

omplex urve, suh that for all (x, y) ∈ U × F , g ◦ h(x, y) = x. Therefore

relation (13) yields:

d(f ◦ h) ∧ dx = 0 .

Thus f depends loally only on g and sine the �bres of φ are onneted one

an onlude using analyti ontinuation that f is globally a funtion of g. In

the end, this implies that the transversally projetive struture assoiated with

F is equivalent to (f(g)dg, 0, dg) and so fators through through the algebrai

map assoiated with f on P2 − I, where I is the indeterminay lous of f .
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