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Abstra
t. � The obje
t of this paper is to des
ribe an expli
it two�parameter family

of logarithmi
 �at 
onne
tions over the 
omplex proje
tive plane. These 
onne
tions

have dihedral monodromy and their polar lo
us is a pres
ribed quinti
 
omposed of a


oni
 and three tangent lines. By restri
ting them to generi
 lines we get an algebrai


family of isomonodromi
 deformations of the �ve�pun
tured sphere. This yields new

algebrai
 solutions of a Garnier system. Finally, we use the asso
iated Ri

ati one�

forms to 
onstru
t and prove the integrability (in the transversally proje
tive sense)

of a subfamily of Lotka�Volterra foliations.

Résumé. � Le but de 
et arti
le est de dé
rire une famille expli
ite à deux paramètres

de 
onnexions logarithmiques plates au dessus du plan proje
tif 
omplexe. Ces 
on-

nexions sont à monodromie diédrale et leur lieu polaire est une quintique pres
rite,


omposée d'une 
onique et de trois droites tangentes. Par restri
tion aux droites

génériques, on obtient alors une famille algébrique de déformations isomonodromiques

de la sphère à 
inq trous. Ce
i livre de nouvelles solutions algébriques d'un système

de Garnier. En�n, nous utilisons les formes de Ri

ati asso
iées à 
es 
onnexions

pour 
onstruire et montrer l'intégrabilité (au sens transversalement proje
tif) d'une

sous-famille de feuilletages de Lotka�Volterra.
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1. Introdu
tion

In this se
tion we des
ribe the main result of this paper, namely an expli
it


onstru
tion of a two�parameter family of logarithmi
 �at 
onne
tions over the


omplement of a parti
ular quinti
 
urve in P2
C. The restri
tion of any element

of this family to generi
 lines in the proje
tive plane gives a isomonodromi


deformation over the �ve pun
tured sphere, to whi
h we 
an asso
iate an al-

gebrai
 solution of some Hamiltonian system of partial di�erential equations,

namely the Garnier-2 system.

1.1. Topology of the 
omplement of a parti
ular plane quinti
. �

In this paper, we 
on
ern ourselves with setting up a two�parameter family of

logarithmi
 �at sl2(C)�
onne
tions over P
2
with a spe
i�
 polar lo
us, namely

a quinti
 
urve Q 
omposed of a 
ir
le and three tangent lines. More pre
isely,

in homogeneous 
oordinates [x : y : t], Q is de�ned, up to PGL3(C) a
tion, by
the equation

xyt(x2 + y2 + t2 − 2(xy + xt+ yt)) = 0 .

Before stating our main result, let us spe
ify what we are looking for: we

want to �nd a family of rank two logarithmi
 �at 
onne
tions over P2
with

polar lo
us equal to some small degree 
urve and "interesting monodromy".

We will show that it is possible to do so with the quinti
 Q de�ne above.

Definition 1.1. � We say that the monodromy representation asso
iated

with a rank two logarithmi
 �at sl2(C)�
onne
tion over P2 − Q is non�

degenerate if

� its image forms an irredu
ible subgroup of SL2(C) ;
� its lo
al monodromy (see De�nition 2.3) around any irredu
ible 
ompo-

nent of Q is proje
tively non�trivial (i.e is non-trivial in PSL2(C)).

In order to establish the existen
e of su
h representations, we use the fol-

lowing result by Degtyarev.

Proposition 1.2. � [Degtyarev, 1999 [6℄℄ The fundamental group Γ of

the 
omplement of a smooth 
oni
 and three tangent lines in P2
admits the

following presentation:

Γ ∼= 〈a, b, c | (ab)2(ba)−2 = (ac)2(ca)−2 = [b, c] = 1〉 .

More pre
isely, Degtyarev proves that we 
an take a (resp. b, c) to be a

loop realising the lo
al monodromy (see De�nition 2.3) around the 
oni
 C :=
(x2 + y2 + t2 − 2(xy + xt + yt) = 0) (resp. the lines (y = 0), (x = 0)), as
illustrated in the left�hand side of Fig. 1. Also note that the fundamental

group of the interse
tion of P2 − Q with any generi
 line is isomorphi
 to the

free group F4 := 〈d1, . . . , d5 | d1 . . . d5 = 1〉; the Lefs
hetz hyperplane theorem
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Figure 1. Fundamental group of the 
omplement of the quinti
 Q
in P2

and restri
tion to a generi
 line.

(see [17℄, Theorem 7.4) tells us that the natural morphism τ : F4 → Γ is onto.

Moreover we know from the expli
it Van Kampen method given in Subse
tion

4.1 of [6℄ that the group Γ 
an be 
omputed by taking the four free generators

of the fundamental group of the interse
tion of P2−Q with any generi
 line and

adding some braid monodromy relations. Thus, if we 
hose a line going through

the base point used to de�ne a, b and c then τ is given (up to a permutation of

the di) by (see the right�hand side of Fig. 1):

d1 7→ b

d2 7→ a

d3 7→ bab−1

d4 7→ c

d5 7→ (abac)−1 .

In parti
ular, any non�degenerate representation ρ of Γ must satisfy

ρ(a), ρ(b), ρ(c), ρ(abac) 6= ±I2 .

Proposition 1.3. � The only (up to 
onjuga
y) family of non�degenerate

representations of Γ into SL2(C) is as follows:

ρu,v : a 7→
(

0 1
−1 0

)

, b 7→
(

u 0
0 u−1

)

, c 7→
(

v 0
0 v−1

)

, for u, v ∈ C∗ .

1.2. Main results. � The 
ore of this paper will be devoted to proving the

following theorem, in whi
h we expli
itly 
onstru
t the announ
ed family of

rank two logarithmi
 �at 
onne
tions.
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Theorem A. � There exists an expli
it two�parameter family ∇λ0,λ1 of log-

arithmi
 �at 
onne
tions over the trivial rank two ve
tor bundle C2 × P2 → P2

with the following properties:

(i) the polar lo
us of ∇λ0,λ1 is equal to the quinti
 Q ∈ P2
and as su
h does

not depend on λ0, λ1 ∈ C;

(ii) the monodromy of ∇λ0,λ1 is 
onjugated to ρu,v with u = −e−iπλ0
and v =

e−iπλ1
. It is a virtually abelian dihedral representation of the fundamental

group Γ := π1(P
2 −Q) into SL2(C) whose image is not Zariski�dense.

The 
onne
tion ∇λ0,λ1 is given in some (see Subse
tion 2.1) a�ne 
hart C2
x,y ⊂

P2
by:

∇λ0,λ1 = d− 1

2(x2 + y2 + 1− 2(xy + x+ y))
(λ0A0 + λ1A1 +A2) ,

where

A0 :=

(

2(x − 1)ydx + (x2 + x(y − 2) − y + 1)x dy
y

2(2x − y + 2)ydx + (2x2 + y(x − y + 3) − 2)x dy
y

−2y2dx + (x + y − 1)x2 dy
y

−2(x − 1)ydx − (x2 + x(y − 2) − y + 1)x dy
y

)

A1 :=

(

(x2 + (x − 1)(y − 1))y dx
x

+ 2(x − 1)xdy (x2 + y(x − y + 3) − 2)y dx
x

+ 2(2x − y + 2)xdy

−(x + y − 1)y2 dx
x

− 2x2dy −(x2 + (x − 1)(y − 1))y dx
x

− 2(x − 1)xdy

)

A2 :=

(

−(x + y + 1)ydx − (x2
− x(y + 2) − y + 1)x dy

y
−2(x − y + 3)ydx − (x2

− 2y(x + 1) + 1)x dy
y

0 (x + y + 1)ydx + (x2
− x(y + 2) − y + 1)x

dy
y

)

.

Remark 1.4. � Note that the existen
e, and uniqueness up to gauge trans-

formation, of su
h a family of 
onne
tions follows from Proposition 1.3 and

the 
lassi
al Riemann�Hilbert 
orresponden
e. The original part of this work

resides in the fa
t that we give a 
onstru
tive proof of this result; in parti
ular

this allows us to des
ribe the asso
iated algebrai
 Garnier solution.

Sin
e P2
is the symmetri
 produ
t Sym2(P1) one has a natural two�fold

rami�ed 
overing π : P1 × P1 2:1−−→ P2
whi
h pulls the quinti
 Q ba
k onto

the subset D ⊂ X := P1 × P1

omposed of the six lines u0, u1 = 0, 1,∞

(for some pair (u0, u1) of proje
tive 
oordinates on X) and of the diagonal ∆
while ramifying over the latter (see Subse
tion 2.1 for more details). As we

are aiming at dihedral monodromy, a natural idea to prove Theorem A is to

de�ne a family of rank one logarithmi
 �at 
onne
tions over X with in�nite

monodromy around D \ ∆ and to push it forward using π to get a family of

su
h 
onne
tions over P2 − Q with monodromy of (generi
ally) in�nite order

around the three lines in the quinti
 and of proje
tive order two at the 
oni


C. This is exa
tly what we will do in Se
tion 2.

Representations of fundamental groups of quasi-proje
tive varieties in

SL2(C) have been 
lassi�ed mainly by Corlette and Simpson [4℄. One im-

portant 
lass of su
h representations is that of those fa
toring through a


urve.
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Definition 1.5. � [4, 15℄ We say that a representation ρ : Γ → SL2(C) fa
-
tors through a 
urve if there exists a 
omplex proje
tive 
urve C, a divisor

δ ⊂ C, an algebrai
 mapping f : P2 − f−1(δ) → C − δ and a representation ρ̃
of the fundamental group of C − δ into PSL2(C) su
h that

(i) f−1(δ) 
ontains Q, therefore there exists a natural group homomorphism

m : π1(P
2 − f−1(δ)) → Γ;

(ii) the diagram

π1(C − δ)

ρ̃
((P

PP
PP

PP
PP

PP
P

π1(P
2 − f−1(δ))

f∗
oo

P◦ρ◦m

��

PSL2(C)


ommutes, where P is the natural morphism SL2(C) → PSL2(C).

Indeed, representations admitting su
h a fa
torisation 
an be obtained

through pullba
k from the monodromy of some logarithmi
 �at 
onne
tion

on a 
urve. We prove that this is not generi
ally the 
ase for our family of


onne
tions.

Theorem B. � The monodromy representation of the 
onne
tions ∇λ0,λ1 in-

trodu
ed in Theorem A fa
tors through a 
urve if and only if there exists

(p, q) ∈ Z2 \ {(0, 0)} su
h that pλ0 + qλ1 = 0, i.e if and only if [λ0 : λ1] ∈ P1
Q.

Remark 1.6. � Note that our 
hoi
e of this parti
ular quinti
 is not arbi-

trary: work in progress [10℄ using Degtyarev's aforementioned paper suggests

that representations of the 
omplement of most quinti
s in the proje
tive plane

are either degenerate or fa
tor through a 
urve.

1.3. Isomonodromi
 deformations. � By restri
tion to generi
 lines in

P2
, we obtain a family (parametrized by (λ0, λ1)) of isomonodromi
 defor-

mations over the Riemann sphere with �ve pairwise distin
t pun
tures P1
x \

{0, 1, t1, t2,∞}, whose monodromy is given in Table 1, where x is a well 
hosen

proje
tive 
oordinate on P1
and t1, t2 are two independent variables (well de-

�ned up to double 
overing) 
orresponding to the interse
tion of the line with

the 
oni
 C. Sin
e this family of 
onne
tions is algebrai
 we get a two�parameter

family of algebrai
 solutions of the isomonodromy equation asso
iated with su
h

deformations, namely the following Garnier system:

{

∂tkpi = −∂qiHk

∂tkqi = ∂pi
Hk

i, j = 1, 2 , (1)

where (pi, qi)i are algebrai
 fun
tions of t1, t2 and H1, H2 are expli
it Hamil-

tonians given in Proposition 3.3 (see also [8, 16℄). More pre
isely if one sets
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Sq := q1 + q2, Pq := q1q2, St := t1 + t2 and Pt := t1t2 one has the following

relations:

{

(λ0 − 1)2λ2
1St = −F (Sq, Pq)

(λ0 − 1)2Pt = −(λ0 + λ1 − 1)2P 2
q

; (2)

where:

F (Sq, Pq) =(λ0 − λ1 − 1)(λ0 + λ1 − 1)3P 2
q

+ (λ0 − 1)2(λ0 + λ1 − 1)2(2Pq − 2PqSq + S2
q − 2Sq)

+ (λ0 − 1)3(λ0 + 2λ1 − 1) .

These solutions generalise the two parameter family known for the Painlevé

VI equation (see Subse
tion 3.1) and the 
omplex surfa
e asso
iated with the

graph of (t1, t2) 7→ (Sq, Pq) is rational.

x = 0 x = 1 x = t1 x = t2 x = ∞
(

a1 0
0 a−1

1

) (

−a0 0
0 −a−1

0

) (

0 1
−1 0

) (

0 a20
−a−2

0 0

) (

a0a
−1
1 0
0 a−1

0 a1

)

Table 1. Monodromy on a generi
 line; here aj = exp(−iπλj) for

j ∈ {0, 1}.

1.4. Lotka�Volterra foliations. � One last fa
t worth noting is that sin
e

∇ is a �at sl2(C)�
onne
tion on a trivial bundle, there exist three meromorphi


one�forms α0, α1 and α2 (given in Theorem A) su
h that

∇ = d + Ω , where Ω :=

(

α1 α0

−α2 −α1

)

satis�es dΩ = Ω ∧ Ω .

In parti
ular, sin
e dα2 ∧ α2 = 0 one obtains a family of transversally proje
-

tive degree two foliations over P2
(see [15℄ and Se
tion 4; note that this family

is therefore integrable in the Casale�Malgrange sense [2℄) with invariant lo
us


ontaining the quinti
 Q. We show that these are 
onjugate to a family of

Lotka-Volterra foliations over C3
[18,19℄; namely given three 
omplex parame-

ters (A,B,C), the 
odimension one foliation asso
iated with the one�form over

C3
, with 
oordinates (x, y, t):

ω0 := (yVt − tVy)dx + (tVx − xVt)dy + (xVy − yVx)dt ,

where:

Vx := x(Cy + t), Vy := y(At+ x) and V t := t(Bx + y) .
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Theorem C. � The foliation de�ned by the meromorphi
 one�form α2 is

equal to the foliation over P2
asso
iated with a Lotka�Volterra system with

parameters

(A,B,C) =

(

λ1

λ0
,

−λ0

λ0 + λ1
,
−(λ0 + λ1)

λ1

)

.

Conversely, any degree two foliation whose invariant lo
us 
ontains the quinti


Q is equal to one of the above form.

One 
an see from Theorem C that this family of foliations is governed by

the parameter λ0/λ1; there exists a one�parameter family of 
onne
tions 
orre-

sponding to any given foliation (see also Subse
tion 4.4 in [15℄). We then prove

that this gives an example of a family of foliations with algebrai
 invariant


urves of arbitrarily high degree (see also [14℄).
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2. Proof of Theorem A

In this se
tion we 
on
ern ourselves with setting up a parti
ular �bre bundle

over the proje
tive plane P2
, and then endowing it with a family of logarithmi


�at 
onne
tions satisfying the 
onditions of Theorem A.

2.1. A rank two �bre bundle. � Start by 
onsidering the 
omplex mani-

fold X := P1 × P1
and de�ne the following involution:

η̃ : X → X

(u0, u1) 7→ (u1, u0) .

The a
tion of η̃ gives us a two�fold rami�ed 
overing of P1 × P1
over the

proje
tive plane P2
, i.e the �bres of the morphism

P1 × P1 −→ P2

([u0
0 : u1

0], [u
0
1 : u1

1]) 7→ [s : p : t] := [(u0
0u

1
1 + u1

0u
0
1) : u

0
0u

0
1 : u1

0u
1
1] .
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are the orbits under η̄. However, for the purpose of this paper, we will 
ompose

this mapping with the linear proje
tive transformation of P2
given by:

[s : p : t] 7→ [p+ t− s : p : t] .

This means that we will now work in the homogeneous 
oordinates x := p+t−s,
y := p and t. We get a two�fold rami�ed 
overing π : X → P2

that rami�es

along the diagonal ∆ := (u0 = u1) ⊂ X and sends it onto the 
oni
:

(C) x2 + y2 + t2 = 2(xy + xt+ yt) .

Now 
onsider the rank two �bre bundle E over the proje
tive plane asso
i-

ated with the lo
ally free sheaf

E := OP2 ⊕OP2(−1) .

Let e+ be some global nonvanishing holomorphi
 se
tion of E (
orresponding to

the OP2
part of the above de
omposition) and e− be some global meromorphi


se
tion linearly independent from e+ (and so 
orresponding to OP2(−1)) with
asso
iated (zeroes and poles) divisor equal to −L∞, where L∞ is the line "at

in�nity" (t = 0).
Let us ask ourselves the following question: what does the pullba
k sheaf

F := π∗E look like ? For any open set U ⊂ X we have F(U) = E(π(U)), whi
h
implies that F is a rank two lo
ally free sheaf indu
ing a rank two �bre bundle

F → X with two global se
tion: one nonvanishing holomorphi
 e1 := π∗e+ and

one meromorphi
 e2 := π∗e−. Sin
e π does not ramify over L0
∞ := (u0 = ∞)

nor L1
∞ := (u1 = ∞), e2 has asso
iated divisor −(L0

∞ + L1
∞); thus:

F ∼= OX ⊕OX(−1,−1) .

To better understand the bundle F , start by 
onsidering the rank two triv-

ial bundle E0 := C2 × X → X over X ; it has two independent (
onstant)

holomorphi
 global se
tions f1 ≡ (1, 0) and f2 ≡ (0, 1). De�ne the following

involution:

E0 → E0

(u0, u1, (Z1, Z2)e1,e2) 7→ (u1, u0, (Z1,−Z2)e1,e2) .

First of all, note that its a
tion on the base 
oin
ides with that of the in-

volution η̄. One 
an then identify two global invariant se
tions of the bundle

E0:

� f1, whi
h is holomorphi
;

� f̂2 := b·f2, where b is the global meromorphi
 fun
tion (u0, u1) 7→ u0−u1.

The lo
al expression b ·f2 de�nes a global meromorphi
 se
tion with asso
iated

divisor ∆− (L0
∞ +L1

∞). The OX�module spanned by the se
tions f1 and f̂2 is

isomorphi
 to the rank two lo
ally free module F (by mapping f1 to e1 and f̂2 to
e2) and as su
h de�nes a rank two ve
tor bundle overX isomorphi
 to F . More
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pre
isely, one goes (lo
ally) from E0 to F using the following transformation

(whi
h is trivial on the base):

(

Z1

Z2

)

e1,e2

7→
(

Z1
Z2

u0−u1

)

e1,ẽ2

.

2.2. A rank one proje
tive bundle. � By quotient on the �bres (P(C2) =
P1
C), one 
an asso
iate to both ve
tor bundles E0 and E rank one proje
tive

bundles P1 × X and P(E). We 
an des
ribe the a
tion of η on the former as

follows:

η : P1 × P1 × P1 → P1 × P1 × P1

(u0, u1, [Z1 : Z2]) 7→ (u1, u0, [Z2 : Z1]) ;

or, in the a�ne 
hart "z = Z1

Z2
", (u0, u1, z) 7→ (u1, u0, 1/z).

One goes from P1 × X to P(E) through the following invariant rational

fun
tions:











s = u0 + u1

p = u0u1

w := (u0 − u1)
z + 1

z − 1

;

here (s, p) gives us lo
al 
oordinates over the base and w does the same in the

�bres. We will use this proje
tive point of view throughout this paper as it

allows for easier 
omputations in the long run. It will also allow us to de�ne

an interesting family of Lotka�Volterra foliations in Se
tion 4.

2.3. Logarithmi
 �at 
onne
tions. � Start by endowing the trivial rank

two ve
tor bundle E0 → X with the following logarithmi
 �at 
onne
tion :

∇0 := d +
1

2

(

ω0 0
0 −ω0

)

,

where u0, u1 are proje
tive 
oordinates on the base X and

ω0 := λ0

(

du0

u0
− du1

u1

)

+ λ1

(

du0

u0 − 1
− du1

u1 − 1

)

,

with (λ0, λ1) ∈ C2 \ {(0, 0)}. This 
onne
tion has singular lo
us equal to six

lines in X (if λ0λ1(λ0 +λ1) 6= 0) and naturally gives rise to a Ri

ati foliation,

de�ned by the following one�form over P(E0) = X × P1
:

R(∇0) := dz + ω0z where z is a proje
tive 
oordinate on the �bres.

Moreover one easily 
he
ks that

u0−u1

z
R(∇0) is an η�invariant logarithmi


one�form over P(F ), asso
iated with some 
onne
tion∇1 in the following sense:

if one has, in some lo
al 
hart

(u0 − u1)R(∇0) = dz + α2z
2 + 2α1z + α0 ,
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with α0, α1, α2 meromorphi
 one�forms (remark that here α2 and α0 are zero),

then one 
an set (in the same lo
al 
hart)

∇1 := d +

(

α1 α0

−α2 −α1

)

.

Sin
e the asso
iated Ri

ati form R(∇1) := (u0 − u1)R(∇0) is η�invariant one

an use ∇1 to get a logarithmi
 
onne
tion ∇2 on E with poles along (y = 0),
(x = 0), L∞ and C, the latter 
oming from the fa
t that π rami�es there. More

pre
isely, in the a�ne 
hart des
ribed in Subse
tion 2.2 one has:

R(∇2) = dw +
1

2(x2 + y2 + 1− 2(xy + x+ y))

(

g(λ0, λ1, w, x, y)
dx

x
+ g(λ1, λ0, w, y, x)

dy

y

)

,

where

g(λ0, λ1, w, x, y) =− ((2λ0 + λ1)x+ λ1(y − 1))w2 + 2(y − x+ 1)xw

+ (2λ0 + λ1)x
3 − ((4λ0 + λ1)(y + 1) + 2λ1)x

2

− ((−2λ0 + λ1)y
2 + 2(2λ0 + λ1)y − (2λ0 + 3λ1))x

+ λ1(y
3 − 3y2 + 3y − 1) .

2.4. Trivialisations. � We wish to turn ∇2 into a 
onne
tion on the trivial

bundle C2 × P2
; this 
an be done simply by blowing up the pole of any global

meromorphi
 se
tion of P(E) then 
ontra
ting a suitable divisor, however we

want to do so without disturbing the logarithmi
 nature of the 
onne
tion ∇2.

Lemma 2.1. � There exists a birational mapping Φ : P(E) P1 × P2

onju-

gating R(∇2) to some Ri

ati one�form, that is asso
iated with a logarithmi


�at 
onne
tion ∇ over the trivial bundle C2 × P2 → P2
.

Proof. � First remark that we have the following lo
al expression along (y =
0):

R(∇2)|(y=0)
= dw + f(x)(w + x− 1)(w − x+ 1)

dy

y
.

This tells us that the 
odimension one foliation asso
iated with the one�form

R(∇2) has two singular points on ea
h �bre above (y = 0), namely at w =
±(x − 1). So in order to get a birationnal map P(E) P1 × P2

one 
an

pro
eed as follows:

� move one of the aforementioned singular lo
i (e.g (w = x− 1) ∩ (y = 0))
at (w = y = 0);

� blow up (y = 0)∩ (w = ∞) then 
ontra
t the stri
t transform of the �bre

at (y = 0) on (w = y = 0). This latest step is a
hieved (in our usual

a�ne 
hart) through the birational map (x, y, w) 7→ (x, y, w/y).

Expli
itly in our lo
al 
hart, the mapping Φ is given by

Φ(w, x, y) = (y(w − x+ 1), x, y) .
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This means that we are blowing up (inside the total spa
e) a line in ea
h �bre

over (y = 0) then 
ontra
ting the stri
t transforms of said �bres thus resolving

the singularities of the global meromorphi
 se
tion e− des
ribed in the proof of

Theorem A; this shows that our mapping does indeed end in a trivial bundle

and sin
e we took 
are of 
ontra
ting divisors only on points of the singular

lo
us of the foliation asso
iated with R(∇2) we get a logarithmi
 �at 
onne
tion

over C2 × P2 → P2
.

In the end, one gets a 
onne
tion ∇ = ∇λ0,λ1 on the trivial bundle C2 × P2

that almost satis�es 
ondition (i) in Theorem A, the only thing left to 
he
k

being whether or not it is a sl2(C)�
onne
tion. Expli
itly, the Ri

ati form

asso
iated with ∇ is given by (in the a�ne 
hart (t = 1)):

R(∇) = dw − 1

2(x2 + y2 + 1− 2(xy + x+ y))

(

f1(w, x, y)
ydx

x
− f2(w, x, y)

xdy

y

)

where

f1(x, y) =((2λ0 + λ1)x+ λ1(y − 1))yw2

+ 2((2λ0 + λ1 − 1)x2 + ((λ1 + 1)y − (2λ0 + 2λ1 − 1))x− λ1(y − 1))w

+ 2(2λ0 + λ1 − 1)x2 + ((−2λ0 + λ1 + 2)y + 2(2λ0 − 3))x

+ λ1(−y2 + 3y − 2)

and

f2(x, y) =(λ0(x− 1) + (λ0 + 2λ1)y)xw
2

+ 2((λ0 − 1)(x2 + 1) + ((λ0 + 2λ1 + 1)y − 2(λ0 − 1))x− (λ0 + 2λ1 − 1)y)w

+ 2(λ0 − 1)(x2 − 1) + (λ0 + 4λ1 + 2)yx− (λ0 + 2λ1)y
2 + (3λ0 + 4λ1 − 2)y .

Note that our birational transformation has "broken" the symmetry between

the two 
omponents f1 and f2.
We 
an expli
itly 
ompute the residues of the 
onne
tion ∇ = ∇λ0,λ1 and so


he
k that it is indeed a sl2(C)�
onne
tion (see Table 2); note that the eigen-

values at (y = 0) have been slightly modi�ed be
ause we moved the singular

points of the asso
iated foliation.

2.5. Monodromy representation. � To 
on
lude the proof of Theorem A

one needs to 
ompute the monodromy representation of the 
onne
tion ∇ and

see that it is, as announ
ed, a dihedral representation of Γ into SL2(C). First,
let us prove a result announ
ed in Subse
tion 1.1.

Proposition 1.3. � The only (up to 
onjuga
y) family of non�degenerate

representations of Γ into SL2(C) is as follows:

ρu,v : a 7→
(

0 1
−1 0

)

, b 7→
(

u 0
0 u−1

)

, c 7→
(

v 0
0 v−1

)

, for u, v ∈ C∗ .
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Divisor Residue Eigenvalues

y = 0

(

− 1
2 λ0 +

1
2

2 (λ0−1)
y−x+1

0 1
2 λ0 − 1

2

)

±λ0 − 1

2

x = 0

(

−λ1(y−x+1)
2 (y−x−1)

2λ1

y−x−1

− λ1(y−x)
2 (y−x−1)

λ1(y−x+1)
2 (y−x−1)

)

±λ1

2

C
(

(2λ0+2λ1−1)(y−x+1)−4 λ0+2
4 (y−x−1) − 2 ((λ0+λ1−1)(y−x+1)−2λ0+2)

(y−x+1)(y−x−1)
(λ0+λ1)(y−x+1)(y−x−1)

8 (y−x−1) − (2λ0+2λ1−1)(y−x+1)−4λ0+2
4 (y−x−1)

)

±1

4

L∞

(− 1
2 λ0 − 1

2 λ1 0
λ0+λ1

2 (X−1)
1
2 λ0 +

1
2 λ1

)

±λ0 + λ1

2
(X = x/y)

Table 2. Residues for ∇.

Proof. � Let ρ be su
h a representation; sin
e Im(ρ) must be non�abelian,

either C := ρ(c) or B := ρ(b) does not 
ommute to A := ρ(a), say B. Then

(AB)2 = (BA)2 and so (AB)2 
ommutes to the non�abelian subgroup spanned

by A and B in PSL2(C), therefore (AB)2 must be equal to εI2 for some

ε ∈ {−1, 1}. This means that AB is diagonisable with eigenvalues in either

{−1, 1} (if ε = 1) or {−i, i}. In the former 
ase, AB would be equal to ±I2
and so one would have AB = BA. Therefore, (AB)2 must be equal to −I2.

Up to 
onjuga
y, one 
an assume that A, B and C are of the form

A =

(

α β
−1 γ

)

, B =

(

µ κ
0 µ−1

)

and C =

(

τ χ
0 τ−1

)

.

Sin
e (AB)2 = −I2, AB = −B−1A−1
and so one must have

{

αγ + β = det(A) = 1
αµ = γµ−1 + κ

. (3)

We assumed the monodromy representation to be non�degenerate; this means

in parti
ular that ABAC = −B−1A−1AC = −B−1C must not be equal to

±I2, i.e B 6= ±C and so µ2 6= τ2.
Case 1: µ2 6= 1. In this 
ase, B is diagonalisable so it is possible (up to


onjuga
y) to assume κ = 0. Sin
e B 
ommutes to C, it follows that χ must

also be zero and τ2 6= 1. This implies that A does not 
ommute to C and so
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one gets







αγ + β = 1
αµ2 = γ
ατ2 = γ

. (4)

As τ2 6= µ2
, this for
es α and γ to be zero, thus β must be one.

Case 2: µ2 = 1. Sin
e B is not proje
tively trivial, then κ must be nonzero.

The fa
t that B must 
ommute to C for
es τ2 to be one and so one must also

have χ 6= 0. It is therefore impossible for A to 
ommute to C and so by a

similar reasoning to the one above, (AC)2 = −I2, thus one gets






αγ + β = det(A) = 1
αµ = γµ−1 + κ
ατ = γτ−1 + χ

, (5)

whi
h is equivalent to (sin
e µ2 = τ2 = 1)






αγ + β = det(A) = 1
α = γ + κµ
α = γ + χτ

, (6)

therefore κµ = χτ . This means that B = ±C and so ABAC = ±I2, whi
h

ontradi
t the non�degenera
y 
ondition.

Remark 2.2. � This implies that any non�degenerate representation of Γ
will have a "sizeable" kernel; indeed re
all that we have a natural two�fold

rami�ed 
overing π : P1 × P1 2:1−−→ P2
ramifying over the diagonal ∆. This

mapping yields a nonrami�ed 
overing π̃ : X − D
2:1−−→ P2 − Q and thus one

gets that π1(X −D) embeds into π1(P
2−Q) ∼= Γ as an index two subgroup. If

one denotes by P1
n the n pun
tured sphere, the proje
tion on the line (y = 0)

gives a �bration X − D → P1
3 with �bre P1

4. As the universal 
overing of P1
3

(namely the hyperboli
 plane H2
) is 
ontra
tible, the homotopy exa
t sequen
e

asso
iated with this �bration yields:

0 = π2(P
1
3) → π1(P

1
4) → π1(X −D) → π1(P

1
3) → 0 .

In parti
ular, there is an inje
tive morphism from π1(P
1
4)

∼= F3, where Fr

denotes the free group over r generators, into π1(X−D); whi
h in turn implies

that the group Γ 
ontains a non
ommutative free group.

Moreover the orbifold fundamental group Γorb
π asso
iated with the rami�ed


overing π also 
ontains a free group; more pre
isely if we de�ne

Γorb
π := 〈a, b, c | (ab)2(ba)−2 = (ac)2(ca)−2 = [b, c] = a2 = 1〉

then π indu
es an embedding of the fundamental group of X minus six lines

into Γorb
π , i.e F2 × F2 →֒ Γorb

π . This is espe
ially relevant sin
e the proje
tive

representations Γ → PSL2(C) asso
iated with the monodromy of the 
onne
-

tions we will des
ribe in this paper fa
tor through this orbifold fundamental

group.
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Now we will des
ribe the lo
al monodromy around irredu
ible 
omponents

of the polar lo
us. Let C be an irredu
ible 
urve 
ontained in the polar lo
us of

some logarithmi
 �at sl2(C)�
onne
tion∇ over P2
, with asso
iated monodromy

representation ̺. Set a point p ∈ C su
h that no other irredu
ible 
urve in the

polar lo
us of the 
onne
tion passes through p; then if U is a su�
iently small

analyti
 neighbourhood of p one gets:

π1(U \ C ∩ U) ∼= Z .

Let γ be any loop generating the above 
y
li
 group; the 
onjuga
y 
lass of the

matrix ̺(γ) does not depend on the 
hoi
e of a base point for the fundamental

group. Indeed, if γ is 
hosen as above for some base point q and if q′ is some

other point in the 
omplement of the polar lo
us, then if one takes δ to be any
path between q′ and q, the loop δ · γ · δ−1

is an element of the fundamental

group of the 
omplement based at q′ whose monodromy is 
onjugate to ̺(γ).

Definition 2.3. � Using the notations above, de�ne the lo
al monodromy

of ∇ around C as the 
onjuga
y 
lass of the matrix ̺(γ).

For j = 0, 1 set aj := e−iπλj
; the monodromy asso
iated with the 
onne
tion

∇0 is as follows:

� around u0 = j (resp. u1 = j), j = 0, 1, it is the multipli
ation by aj
(resp. a−1

j );

� around u0 = ∞ (resp. u1 = ∞), it is the multipli
ation by a−1
0 a−1

1 (resp.

a0a1).

This is a 
omplete des
ription sin
e the fundamental group of the proje
tive

line minus six lines is isomorphi
 to F2 × F2 and is generated by loops going

around x, y = 0, 1 on
e.

The monodromy of the 
onne
tion∇2 
omes dire
tly from that of∇0 around

the three lines in its singular lo
us; more pre
isely we 
an expli
itly 
ompute

(up to 
onjuga
y) its lo
al monodromy around:

� (y = 0):
(

a0 0
0 a−1

0

)

;

� (x = 0):
(

a1 0
0 a−1

1

)

;

� and L∞:

(

(a0a1)
−1 0

0 a0a1

)

.

However the monodromy of ∇2 around the 
oni
 C 
omes solely from the

rami�
ation of the 
overing π. More pre
isely sin
e any path linking (u0, u1) ∈
X to (u1, u0) pushes ba
k as a loop on the quotient P2 = π(X) and sin
e any
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lo
al solution z of ∇0 satis�es z(u1, u0) =
1

z(u0, u1)
the monodromy group of

∇2 must 
ontain the following matrix:

(

0 1
1 0

)

.

Proposition 2.4. � The monodromy group of the 
onne
tion ∇ is the sub-

group of the in�nite dihedral group

D∞ :=

{(

0 α
−α−1 0

)

,

(

β 0
0 β−1

)
∣

∣

∣

∣

α, β ∈ C∗

}

≤ SL2(C)

generated by the following three matri
es:

(

0 1
−1 0

)

,

(

−e−iπλ0 0
0 −eiπλ0

)

and

(

e−iπλ1 0
0 eiπλ1

)

.

Proof. � We know from Proposition 1.2 that the fundamental group of the


omplement of the singular lo
us of ∇ in P2
has the following presentation:

Γ = 〈a, b, c | (ab)2(ba)−2 = (ac)2(ca)−2 = [b, c] = 1〉 ;

and that we 
an take a to be a loop whose lift is some path in X joining (x, y)
and (y, x) (for generi
 (x, y) ∈ X) and b (resp. c) to be a loop going around

(y = 0) (resp. (x = 0)) on
e (see Fig. 1). If we 
hoose a set of lo
al 
oordinates
in whi
h the monodromy matri
es of both b and c are diagonal (this is possible
be
ause the two loops 
ommute) then the monodromy of a only 
omes from

the 
overing π and is equal to:

(

0 1
−1 0

)

.

In 
on
lusion, the monodromy representation is given by the following matri
es:

(

0 1
−1 0

)

,

(

−e−iπλ0 0
0 −eiπλ0

)

and

(

e−iπλ1 0
0 eiπλ1

)

,

whi
h are elements of D∞.

3. Algebrai
 Garnier solutions

In this se
tion we show that the 
onne
tion ∇ indu
es an isomonodromi


deformation over the four and �ve pun
tured spheres. Furthermore we give

rational parametrisations of the asso
iated algebrai
 Painlevé VI and Garnier

solutions and a des
ription of the asso
iated monodromy representation.
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C

Figure 2. Spe
ial lines.

3.1. Painlevé VI solutions. � It is well known [11,12℄ that isomonodromi


deformations of rank two sl2(C)�
onne
tions over the four pun
tured sphere


orrespond to solutions of the sixth Painlevé equation, namely the following

order two nonlinear di�erential equation:

d2q

du2
=
1

2

(

1

q
+

1

q − 1
+

1

q − u

)(

dq

du

)2

−
(

1

u
+

1

u− 1
+

1

q − u

)

dq

du

+
q(q − 1)(q − u)

u2(u− 1)2

(

α+ β
u

q2
+ γ

u− 1

(q − 1)2
+ δ

u(u− 1)

(q − u)2

)

,

where α, β, γ and δ are 
omplex�valued parameters.

Let us look at the 
onne
tion indu
ed by ∇ on the family of lines going

through P0 := (x = 0) ∩ L∞ (see Fig. 2) that are neither (x = 0) nor the line
at in�nity; these are the lines of the form (y = c) in the a�ne 
hart (x, y) from
Subse
tion 2.1. A

ording to Subse
tion 2.4, this 
orresponds to studying the

isomonodromi
 deformation given by the following Ri

ati forms, for generi
 y:

R(∇y) := dw − y

2x(x2 + y2 + 1− 2(xy + x+ y))
fy(x,w)dx ,
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where

fy(x,w) =(λ0(x− 1) + (λ0 + 2λ1)y)yw
2

+ 2((λ0 − 1)(x2 + 1) + ((λ0 + 2λ1 + 1)y − 2(λ0 − 1))x− (λ0 + 2λ1 − 1)y)w

+ 2(λ0 − 1)(x2 − 1) + (λ0 + 4λ1 + 2)yx− (λ0 + 2λ1)y
2 + (3λ0 + 4λ1 − 2)y .

From this isomonodromi
 deformation we produ
e algebrai
 solutions of the

Painlevé VI equation by adapting part of a paper by Hit
hin [11℄.

Proposition 3.1. � The family of algebrai
 solutions of the Painlevé VI

equation asso
iated with the 
onne
tions (∇λ0,λ1)λ0,λ1 is given by the fun
tions

q(u) = − λ1

2λ0 + λ1

√
u

and the parameters:

α =
(2λ0 + λ1)

2

2
, β = −λ2

1

2
, γ = 1/8 and δ = 3/8 .

Proof. � Let z be a parameter su
h that z2 = y; then ∇y has poles at x =
(z±1)2, x = 0 and x = ∞. Up to Möbius transformation, one 
an assume that

these are in fa
t lo
ated at s ∈ {0, 1, u(z),∞}, with:

u(z) =
z2 − 2z + 1

z2 + 2z + 1
=

(z − 1)2

(z + 1)2
.

It is then possible to 
ompute the relevant data asso
iated with this family of


onne
tions (see Table 3).

Let us now set

H :=
W0

x
+

W1

x− 1
+

W2

x− t
,

where the Wi are the residues from Table 3; then sin
e −W is diagonal and

equal to the sum W0 + W1 + W2, its lower left 
oe�
ient is a degree one

polynomial in x, whose root 
an be expli
itly 
omputed as a rational fun
tion

of z:

q(z) := − λ1

2λ0 + λ1

z − 1

z + 1
,

or as an algebrai
 fun
tion of u:

q(u) = − λ1

2λ0 + λ1

√
u .

One 
an then 
he
k that this fun
tion u 7→ q(u) is indeed a solution of the sixth

Painlevé equation for the announ
ed 
hoi
e of parameters.
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Pole Residue Eigenvalues

x = 0 W0 :=

(

−λ1(z
2+1)

2 (z2−1)
2λ1

z2−1

− λ1z
2

2 (z2−1)
λ1(z

2+1)
2 (z2−1)

)

±λ1

2

x = 1 W1 :=

(

(2λ0+2 λ1−1)z+2 λ0−1
4 (z+1)

(λ0+λ1−1)z+λ0−1
z2+z

− (λ0+λ1)z
2+λ0z

4 (z+1) − (2λ0+2 λ1−1)z+2 λ0−1
4 (z+1)

)

±1

4

x = t(z) W2 :=

(

(2λ0+2 λ1−1)z−2 λ0+1
4 (z−1) − (λ0+λ1−1)z−λ0+1

z2−z

(λ0+λ1)z
2−λ0z

4 (z−1) − (2λ0+2 λ1−1)z−2 λ0+1
4 (z−1)

)

±1

4

x = ∞ W :=

(

−λ0 − 1
2 λ1 +

1
2 0

0 λ0 +
1
2 λ1 − 1

2

)

±2λ0 + λ1 − 1

2

Table 3. Residues for ∇y .

3.2. Restri
tion to generi
 lines. � Let us now 
onsider the 
onne
tion

indu
ed by ∇ on generi
 lines in P2
, su
h a line being given in our usual

a�ne 
hart by an equation of the form y = αx + β. We thus obtain an

isomonodromi
 deformation (∇α,β)α,β over the �ve pun
tured sphere; more

pre
isely if one 
hooses a parameter z su
h that z2 = β(1 − α) + α then one

gets (after Möbius transformation) a family of logarithmi
 �at 
onne
tions over

P1 \ {0, 1, t1, t2,∞}, where:

t1 = − α(z + 1)2

(α− 1)(α− z2)
and t2 = − α(z − 1)2

(α− 1)(α− z2)
.

The asso
iated Ri

ati forms are given by:

R(∇α,β) = dw +
a2(x)w

2 + a1(x)w + a0(x)

2x(x − 1)(x− t1)(x− t2)
dx
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where:

a2(x)

α(x − 1)(z2 − α)
=(λ0 + λ1)(α

2 − (z2 + 1)α+ z2)x2

+ (−λ1α
2 + (λ0(z

2 + 1) + 2λ1)α− (2λ0 + λ1)z
2)x

+ λ1(z
2 − 1)α

a1(x)

2
=(λ0 + λ1)(α

4 − 2(z2 + 1)α3 + (z4 + 4z2 + 1)α2 − 2(z4 + z2)α+ z4)x3

+ [−(2λ0 + 3λ1 − 1)α4

+ ((4λ0 + 4λ1 − 1)z2 + 4λ0 + 6λ1 − 1)α3

− ((2λ0 + λ1)z
4 + 2(4λ0 + λ1 − 1)z2 + (2λ0 + 3λ1))α

2

+ ((4λ0 + 2λ1 − 1)z4 + (4λ0 + 4λ1 − 1)z2)α

− (2λ0 + λ1 + 1)z4]x2

+ [2λ1a
4 − ((2λ0 − 1)z2 + (2λ0 + 6λ1 − 1))α3

+ ((λ0 − λ1)z
4 + 2(3λ0 + 2λ1 − 1)z2 + λ0 + 3λ1)α

2

+ ((2λ0 − 1)z4 + (2λ0 + 2λ1 − 1)z2)α]x

+ λ1(2(1− z2)α+ z4 − 1)α2

and

a0(x)

4α(α− 1)
=(λ0 + λ1 − 1)(1− α)(z2 − α)x2

+ (((λ0 − 1)(α− 2)− λ1)z
2 − λ1α

2 + (λ0 + 2λ1 − 1)α)x

+ λ1α(z
2 − 1) .

Using the expli
it formulas given in Subse
tion 2.4, we 
an expli
itly 
ompute

the spe
tral data asso
iated with these 
onne
tions (see Table 4). To mirror

what we did in Subse
tion 3.1, let us assume (up to a 
hange of basis) that the

residue at in�nity M is diagonal and set:

Ĥ :=
M0

x
+

M1

x− 1
+

Mt1

x− t1
+

Mt2

x− t2
;

then sin
e M does not depend on x, the lower left 
oe�
ient of Ĥ must be a

degree two polynomial in x, say:

Ĥ2,1 =
c(t1, t2)(x

2 − Sq(t1, t2)x+ Pq(t1, t2))

x(x− 1)(x− t1)(x− t2)
, (7)

where Sq := q1 + q2 and Pq := q1q2, with q1, q2 some algebrai
 fun
tions of

(t1, t2).
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Pole Residue Eigenvalues

x = 0 M0 :=

(

−λ1(z
2−2α+1)

2 (z2−1) − 2λ1(α−1)
z2−1

−λ1(z
2−α)

2 (z2−1)
λ1(z

2−2α+1)
2 (z2−1)

)

±λ1

2

x = 1 M1 :=

(

− 1
2 λ0 +

1
2 − 2α(α−1)(1−λ0)

α2−z2

0 1
2 λ0 − 1

2

)

±1

2
(λ0 − 1)

x = t1 Mt1 :=

(

(2λ0−1)(z+1)+2λ1(α+z)
4 (z+1) − (α−1)(λ0+λ1α−1+(λ0+λ1−1)z)

(α+1)z+z2+α

λ0(z
2+(1+α)z+α)+λ1(z+α)2

4 ((α−1)z+α−1) − (2λ0−1)(z+1)+2λ1(α+z)
4 (z+1)

)

±1

4

x = t2 Mt2 :=

(

− (2λ0−1)(1−z)+2λ1(α−t)
4 (z−1)

(α−1)(λ0+αλ1−1−(λ0+λ1−1)z)
(α+1)z−z2−α

−λ0(z
2+(1+α)z+α)+λ1(z+α)2

4 ((α−1)z−α+1)
(2λ0−1)(1−z)+2λ1(α−z)

4 (z−1)

)

±1

4

x = ∞ M :=

(

− 1
2 λ0 − 1

2 λ1 0

− (λ0+λ1)α
2 (α−1)

1
2 λ0 +

1
2 λ1

)

±1

2
(λ0 + λ1)

Table 4. Residues for ∇α,β.

3.3. Rational parametrisations. � First remark that one 
an rewrite (7)

as follows:

x(x − 1)(x2 − Stx+ Pt)Ĥ2,1 = c(t1, t2)(x
2 − Sqx+ Pq) ,

where St = t1 + t2 and Pt = t1t2 are the elementary symmetri
 polynomials in

(t1, t2).

Lemma 3.2. � The parameters (α, z) introdu
ed in Subse
tion 3.2 give a ra-

tional mapping (P1)2 (P1)4 giving expli
it expressions of (t1, t2, Sq, Pq),
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namely:

t1 = − α(z + 1)2

(α− 1)(α− z2)
,

t2 = − α(z − 1)2

(α− 1)(α− z2)
,

Sq =
λ0(α

2 − 2α+ z2)− λ1(1 + z2 + 2α)α+ α(2 − α)− z2

(λ0 + λ1 − 1)(α− z2)(α − 1)
,

Pq =
(λ0 − 1)(z − 1)(z + 1)α

(λ0 + λ1 − 1)(α− z2)(α− 1)
.

Proof. � Using Gröbner bases to eliminate the variable x one obtains a system

of equations of the following form:

{

(λ0 − 1)2λ2
1St = −F (Sq, Pq)

(λ0 − 1)2Pt = −(λ0 + λ1 − 1)2P 2
q

; (8)

where:

F (Sq, Pq) =(λ0 − λ1 − 1)(λ0 + λ1 − 1)3P 2
q

+ (λ0 − 1)2(λ0 + λ1 − 1)2(2Pq − 2PqSq + S2
q − 2Sq)

+ (λ0 − 1)3(λ0 + 2λ1 − 1) .

The dis
riminant ∆t of this system vanishes along 2 pairs of parallel lines in

P1
Sq

× P1
Pq
; namely:

(∆t = 0) = (α = 0) ∪ (x′ = 0) ∪ (α = ∞) ∪ (x′ = ∞) ⊂ P1
α × P1

x′

for some proje
tive 
oordinate x′
su
h that z2 = αx′

. This expli
it des
ription

of the two�fold rami�ed 
overing given by z allows us to parametrize (Sq, Pq)
as rational fun
tions of (α, z), hen
e 
on
luding the proof.

We 
an now prove that we have indeed 
onstru
ted a family of algebrai
 solu-

tions for a Garnier system. More pre
isely, 
onsider the following Hamiltonian

system:

{

∂tkpi = −∂qi
Hk i, k = 1, 2

∂tkqi = ∂pi
Hk i, k = 1, 2

, (9)

where:

Hk := (−1)k
2H(tk, t3−k,p1,p2,q1,q2) +H(tk, t3−k,p2,p1,q2,q1)

2(q1 − q2)(t1 − t2)(tk − 1)tk
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with:

H(t1, t2,p1,p2,q1,q2)

p1q1(q2 − t1)
= p1q

3
1 + ((t1 + t2 + 1)p1 + (λ0 + λ1 − 1))q2

1

− ((t1 + t2 + t1t2)p1 − (2λ0 + 2λ1 − 1)(t1 + t2)− 2t2 + 2(λ0 − 1))
q1

2
+ (−(2λ0 − 1)t1t2p1 + 2(λ0 + λ1 − 1)t2 + 2λ0 − 1)t1 + 2(λ0 − 3)t2 .

Proposition 3.3. � Let q1, q2 be the algebrai
 fun
tions de�ned in Subse
tion

3.2; then there exist two algebrai
 fun
tions p1(t1, t2) and p2(t1, t2) su
h that

(q1, q2, p1, p2) is a solution of (9).

Proof. � Sin
e we know no rational parametrisation of (q1, q2) we 
onsider the
"symmetrised" system:



















∂tkSq = (∂p1 + ∂p2)Hk k = 1, 2
∂tkPq = (q2∂p1 + q1∂p2)Hk k = 1, 2
∂tkSp = −(∂q1 + ∂q2)Hk k = 1, 2

∂tkγ =
−1

(q1 − q2)2
((q1 − q2)(∂q1 + ∂q2) + (p1 − p2)(∂p1 + ∂p2))Hk k = 1, 2

,

where Sp := p1 +p2 and γ =
p1 − p2

q1 − q2
. To obtain this we �rst had to 
onsider

the variable δ := q1−q2 and then eliminate it using the fa
t that all expressions

obtained had even degree in δ and that δ2 = S2
q − 4Pq.

Assume that (p1, p2) are two algebrai
 fun
tions su
h that (q1, q2, p1, p2) is a
solution of (9). Using the �rst two equations with k = 1 one then gets Sp and

γ as fun
tions of ∂t1Sq and ∂t1Pq whi
h in turn (see Lemma 3.2) are rational

fun
tions of (α, t), namely:

γ =− (λ0 + λ1 − 1)(α+ 1)(α− z2)2(α − 1)

2α(α− z)(α+ z)(z + 1)(z − 1)
,

Sp =
(α− z2)

2α(α− z)(α+ z)(z + 1)(z − 1)
Ŝp ,

with

Ŝp =(λ0 + 2λ1 − 1)α3

+ ((2λ0 + λ−2)z
2 − (3λ0 + λ1 − 3))α2

+ ((λ0 − 3λ1 + 1)α+ (λ0 − 1))z2 .

This 
ompletes the rational parametrisation of all relevant variables and allows

us 
he
k that (Sq, Pq, Sp, γ) indeed satis�es the above system.

We 
an des
ribe more pre
isely the rational surfa
e parametrising q1 and q2
as follows. Using the equations linking (St, Pt) to (Pq, Sq) and Gröbner bases

one show that Sq is root of a degree four polynomial with 
oe�
ients depending

on St, Pt (and thus on t1, t2) and that Pq 
an be 
omputed as a polynomial in
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St, Pt and Sq. Therefore, there exists a polynomial P ∈ C[X,T1, T2] of degree
four in its �rst variable su
h that P (Sq, t1, t2) = 0 and so if one sets

Σ := {x, t1, t2 ∈ P1 |P (x, t1, t2) = 0}

then the proje
tion p : Σ → P1
t1

× P1
t2

is a fourfold rami�ed 
overing, whose

holonomy we 
an fully des
ribe.

Proposition 3.4. � The holonomy representation into S4 of the 
overing p
is trivial at t1 = t2 and is a double transposition at ti = 0, 1,∞ (i = 1, 2).

Proof. � Sin
e (Sq, Pq) is solution of a Garnier system, we know that this


overing 
an only ramify over ti = 0, 1,∞ (i = 1, 2) or t1 = t2. To better

understand the way it does, let us look into its holonomy representation, whi
h

is a mapping from the fundamental group G of the 
omplement of the rami�-


ation lo
us in P1 × P1
into the symmetri
 group S4. By expli
itly fa
torising

the polynomial P over all 
omponents of the possible rami�
ation lo
us one

gets that:

� over ti = 0 (i = 1, 2) the polynomial has two double roots;

� over ti = 1 (i = 1, 2), the situation is the same

� over ti = ∞ (i = 1, 2), there is only one order four root;

� over t1 = t2 the polynomial has four simple roots (the 
overing doesn't

a
tually ramify there).

If one looks (for example) at the restri
ted polynomial P (Sq, t1, 7) one 
an

see that its dis
riminant has a double root at t1 = 1 and that the same is

true should one ex
hange the roles of t1 and t2; this means that the holonomy

around ti = 0, 1 is a double transposition. Moreover, it takes two elementary

transforms to turn the rami�
ation at in�nity into two double roots with the

dis
riminant in Sq having a double root there. The holonomy being invariant

under birational morphisms, it is also a double transposition.

Corollary 3.5. � The 
omplex surfa
e Σ is rational.

Proof. � By setting t1 or t2 to any value distin
t from 0, 1,∞, one gets a

fourfold 
overing from some 
urve C onto P1
ramifying over 0, 1 and ∞. The

Riemann�Hurwitz formula yields that the 
urve C is of genus zero, meaning

that it is ne
essarily a rational 
urve. This proves that the surfa
e Σ is a

�bration over P1
with general �bre isomorphi
 to P1

and so is in fa
t rational

(see for example [13℄).

4. Lotka�Volterra foliations

In order to prove Theorem C, let us �rst de�ne the following notion (see [20℄).
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Definition 4.1 (Transversally proje
tive foliation). � Let M be a smooth

proje
tive 
omplex manifold; a 
odimension one foliation F on M (de�ned by a

Frobenius�integrable nonzero rational one�form ωF ) is said to be transversally

proje
tive if there exist two rational one�forms α, β over M su
h that

d +

(

α β
ωF −α

)

de�nes a �at sl2(C)�
onne
tion over the rank two trivial bundle C2 ×M .

If one looks at the restri
tion ω of the Ri

ati one�form R(∇) to (w = ∞)
one obtains a 
odimension one transversally proje
tive foliation F over the

proje
tive plane P2
; indeed, if

R(∇) = dw + ωw2 + 2αw + β

then

d +

(

α β
ω −α

)

is gauge�equivalent to ∇ and as su
h is a �at sl2(C)�
onne
tion over C2 × P2
.

The one�form ω 
an be written in the a�ne 
hart C2
x,y ⊂ P2

des
ribed in

Subse
tion 2.1 as:

ω = ((2λ0 + λ1)x+ λ1(y − 1))ydx− ((λ0 + 2λ1)y + λ0(x− 1))xdy

This foliation's invariant lo
us 
ontains the singular lo
us of ∇, namely the

quinti
 Q and has seven order one singularities, namely (in homogeneous 
o-

ordinates [x : y : t] 
hosen so that our usual a�ne 
hart 
orresponds to t = 1)
[0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 1], [λ2

1 : λ2
0 : (λ0 + λ1)

2], [1 : 1 : 0], [0 : 1 : 0] and

[1 : 0 : 0]. Also note that this foliation only depends on the quotient λ :=
λ0

λ1
;

indeed it is equivalent to:

((2λ+ 1)x+ y − 1)ydx− ((λ + 2)y + λ(x− 1))xdy = 0 .

Also note that every singular point of the above foliation lies on the quinti
 Q.

Now de�ne, given three 
omplex parameters (A,B,C), the Lotka-Volterra

ve
tor �eld over C3
(with 
oordinates x, y, t) as LV(A,B,C) := Vx∂x +Vy∂y +

Vt∂t, where:

Vx := x(Cy + t), Vy := y(At+ x) and V t := t(Bx + y) .

This system traditionally 
omes from the study of a "food 
hain" system with

3 spe
ies preying on ea
h other in a 
y
le. One 
an then [18, 19℄ 
onsider

the foliation de�ned by both LV(A,B,C) and the radial ve
tor �eld R :=
x∂x+ y∂y+ t∂t: it is the 
odimension one foliation over C3

asso
iated with the

one�form

ω0 := (yVt − tVy)dx + (tVx − xVt)dy + (xVy − yVx)dt .
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Figure 3. Singular lo
us for the foliation F .

4.1. Proof of Theorem C. � To prove Theorem C, one needs only show

that the foliations de�ned by the one�forms ω and ω′
0 := ω0|t=1

are the same

in some a�ne 
hart. Ea
h of the aforementioned one�forms has four singular

points, namely

(0, 0) ,

(

1

B
, 0

)

, (0, A) and

(

A(C − 1) + 1

C(B − 1) + 1
,
B(A− 1) + 1

C(B − 1) + 1

)

for ω′
0

and

(0, 0) , (1, 0) , (0, 1) and

(

λ2
1

(λ0 + λ1)2
,

λ2
0

(λ0 + λ1)2

)

for ω .

We then submit ω′
0 to an a�ne 
hange of 
oordinates to send its �rst three

singular points onto (0, 0), (1, 0) and (0, 1). A ne
essary 
ondition for the two

forms to de�ne the same foliation is then that their fourth singularities be

equal; after 
omputation we �nd that one must have:

B(A(C − 1) + 1)

C(B − 1) + 1
=

λ2
1

(λ0 + λ1)2
(10)

and

B(A− 1) + 1

A(C(B − 1) + 1)
=

λ2
0

(λ0 + λ1)2
. (11)
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Solving the two above equations, one obtains a rational parametrisation of A
and C by B, namely:

A =
(B − 1)λ1

(2λ0 + λ1)B
and C = −2B(λ0 + λ1)

2 + λ0λ1

λ0λ1(B − 1)
.

A ne
essary and su�
ient 
ondition for the two asso
iated foliation to 
oin
ide

is that ω ∧ ω′
0 = 0; using this and the above parametrisation one gets that B

must be equal to − λ0

λ0 + λ1
and thus obtains the �rst par of Theorem C.

Conversely, dire
t 
omputation shows that any degree two foliation over P2

whose invariant lo
us 
ontains the quinti
 Q 
an be written in the a�ne 
hart

(s, p) as

((γ1 + 2γ2)x+ γ1(y − 1))ydx− ((2γ1 + γ2)y + γ2(x− 1))xdy

with γ1, γ2 ∈ C. In parti
ular, su
h a foliation automati
ally 
omes from the

monodromy representation of one of our 
onne
tions ∇λ0,λ1 , with λ0 = γ2 and
λ1 = γ1.

Remark 4.2. �

1. The relation ABC = 1 obtained in Theorem C 
an be seen intuitively as


oming from the order 3 symmetry of the quinti
 Q: indeed if one denotes

by J the homographi
 order 3 transform de�ned on P1
by

z 7→ − 1

1 + z

then one has

(A,B,C) =

(

λ1

λ0
, J

(

λ1

λ0

)

, J2

(

λ1

λ0

))

.

2. The two variables Lotka�Volterra system is usually de�ned as being fol-

lowing "prey�predator" di�erential system:

{

x′ = x(α + βy)
y′ = y(γ + δx)

,

to model an e
osystem where x preys on y. However, the plane foliation
asso
iated with this system 
annot be 
onjugate to the one asso
iated

with ω as it has two double singular points whereas ω has seven simple

singularities. Thus this gives some form of justi�
ation to the fa
t that we


hose to 
onsider a three variables system in this paragraph (as opposed

to the more "natural" two variables one).
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4.2. Invariant 
urves. � The invariant lo
us of the family of foliations

presented here does not have normal 
rossings, hen
e the Cerveau�Lins Neto

bound on the degree (deg(F) + 2, see [3℄) does not apply here. Furthermore

one may note that (for generi
 parameters λ0, λ1) the foliation F has simple

singularities at the tangen
y lo
us of the 
oni
 C and the three invariant lines.

Moreover, we have the following result.

Proposition 4.3. � The foliation F admits, for λ0, λ1 ∈ Q, invariant alge-

brai
 
urves of arbitrarily high (depending on λ0/λ1) degree.

Proof. � The se
tion (w = ∞) ⊂ P1×P2
that we used to de�ne our foliations

lifts through π : P1 × P1 2:1−−→ P2
(see Subse
tion 2.1) to the se
tion (z = 1) of

the trivial bundle X × P1
(see Subse
tion 2.2) and so the foliation itself lifts

(in our usual lo
al 
hart) to:

(F ′) λ0

(

du0

u0
− du1

u1

)

+ λ1

(

du0

u0 − 1
− du1

u1 − 1

)

= 0 .

If one looks at rational values of λ0 and λ1, one gets a foliation F with �nite

holonomy whi
h as a 
onsequen
e admits a rational �rst integral. Moreover, in

that parti
ular 
ase every leaf is an algebrai
 invarian
e 
urve and it is possible

to �nd these with arbitrarily high degree (for varying λ0, λ1). For example, if

λ0 = n ≥ 1 is a positive integer and if we set λ1 = 1 then a simple 
omputation

shows that the 
urve

(Cn) un
0 (u0 − 1)− un

1 (u1 − 1) = 0

on X is invariant under F ′
. An indu
tion then shows that this 
urve is the

pullba
k by π of a degree 2+n 
urve on P2
and so we get an invariant 
urve of

su
h degree for the foliation F 
orresponding with the parameters (n, 1).

Remark 4.4. � Note however that this is a slightly weaker example than the

ones given in [14℄ as the lo
al type of our singularities depends on the parameter

λ0/λ1.

5. Proof of Theorem B

In this paragraph, we prove that our family of monodromy representations


annot be generi
ally obtained through a pullba
k method [8, 9℄ by showing

that it does not fa
tor through a 
urve [4℄.

5.1. First 
ase: λ0 and λ1 are not linearly dependant over Z. �

Suppose that we have some 
omplex proje
tive 
urveC, a divisor δ = t1+. . .+tk
in C, an algebrai
 mapping f : P2 − f−1(δ) → C − δ and a representation ρ̃ of
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the fundamental group of C − δ into PSL2(C) satisfying the 
onditions stated

in De�nition 1.5. In parti
ular, the diagram

π1(C − δ, x0)

ρ̃

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
π1(P

2 − f−1(δ))

P◦ρ◦m

��

f∗
oo

PSL2(C)


ommutes. Sin
e the rami�ed 
overing π : X
2:1−−→ P2

is unrami�ed between

X −D and P2 −Q, where D is the divisor in X made of the six lines u0, u1 =
0, 1,∞ and the diagonal∆ = (u0 = u1), then the fundamental group π1(X−D)
is realised as a subgroup of Γ. This means that if one sets φ := f ◦ π one has

su
h a diagram:

π1(C − δ, x0)

ρ̃′

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
π1(X − φ−1(δ))

ρ′

��

φ∗
oo

PSL2(C)

.

Now let L be a generi
 horizontal line in X (i.e of the form (u1 = c), with
c 6= 0, 1,∞); sin
e f is algebrai
 the restri
ted map φ|L extends as a rami�ed


overing φL : L → C with topologi
al degree equal to some d ≥ 1. The line L
is isomorphi
 to P1

, so the Riemann�Hurwitz formula for
es the genus of the


urve C to be equal to zero; as su
h we 
an assume without loss of generality

that φL is a d�fold 
overing of the proje
tive line over itself. Moreover, one has

that φ∗
Lδ must 
ontain {0, 1, c,∞}.

The representation ρ̃′ must indu
e in�nite order monodromy about at least

one loop in C−δ, say γ0, or else all elements in the image of ρ would be of �nite

order. This means that M := ρ̃′(γ0) is a in�nite-order element in PSL2(C).
Let us assume that there are at least two distin
t elements γ and γ′

in the

�bre of (φL)∗ above γ0; then both ρ′(γ) and ρ′(γ′) must be powers of M . This

gives us a relation between words in the matri
es

(

a0 0
0 a−1

0

)

,

(

a1 0
0 a−1

1

)

and

(

a0a1 0
0 (a0a1)

−1

)

,

where aj = e−iπλj
. Sin
e generi
ally λ0 and λ1 are not linearly dependant, this

is impossible; hen
e we have that the �bre (φL)
−1
∗ (γ0) may only 
ontain one

element. This implies that φL rami�es totally over (at least) three points in C
and so the Riemann�Hurwitz formula yields that φL must be one�to�one.

Let u ∈ P1
and set hu ∈ PSL2(C) to be the Möbius transform sending the

rami�
ation lo
us of φ(u1=u) onto 0, 1,∞; up to 
omposing it with (u0, u1) 7→
(hu1(u0), u1) we 
an assume that φ is exa
tly the �rst proje
tion pr1 : X → P1

.

However if one looks at the restri
tion of φ to some verti
al line then one
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should again generi
ally obtain in�nite lo
al monodromy at three points, whi
h

is impossible with pr1, thus 
on
luding the proof.

5.2. Se
ond 
ase: there exists (p, q) in Z2 \ {(0, 0)} su
h that pλ0 +

qλ1 = 0. � We 
an assume that at least one of

λ0

λ1
or

λ1

λ0
is a rational number,

therefore the transversally proje
tive foliation F introdu
ed in Se
tion 4 has

�nite monodromy and so admits some rational �rst integral g : P2 → P1
. Using

Subse
tion 4.4 in [15℄, one dedu
es that the transversally proje
tive stru
ture

(β, α, ω) asso
iated with F is equivalent to one of the form (β̃, 0, dg) with the

following relations (see [15℄, Subse
tion 4.1):

β̃ ∧ dg = 0 and dβ̃ = 0 .

The �rst relation implies that β̃ must be of the form β̃ = fdg for some rational

f : P2 → P1
; using the se
ond relation one then gets that

df ∧ dg = 0 . (12)

Using standard results from birational geometry (see for example Theorem II.7

in [1℄) one obtains that there exists a 
omplex surfa
e M and a �nite sequen
e

b : M → P2
of blow�ups su
h that g := g ◦ b is a holomorphi
 fun
tion on M .

Moreover, if we set f := f ◦ b then we must have

df ∧ dg = 0 . (13)

It then follows from Stein's fa
torisation theorem that there exists a 
omplex


urve C, a rami�ed 
overing r : C → P1
and a �bration φ : M → C with


onne
ted �bres su
h that the following diagram

M

g

��

φ
// C

r
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

P1


ommutes. This means that lo
ally on any su�
iently small analyti
 open

set U the 
overing r gives an orbifold 
oordinate x on the 
urve C and there

exists a biholomorphism h between U ×F and φ−1(U), where F is a 
onne
ted


omplex 
urve, su
h that for all (x, y) ∈ U × F , g ◦ h(x, y) = x. Therefore

relation (13) yields:

d(f ◦ h) ∧ dx = 0 .

Thus f depends lo
ally only on g and sin
e the �bres of φ are 
onne
ted one


an 
on
lude using analyti
 
ontinuation that f is globally a fun
tion of g. In

the end, this implies that the transversally proje
tive stru
ture asso
iated with

F is equivalent to (f(g)dg, 0, dg) and so fa
tors through through the algebrai


map asso
iated with f on P2 − I, where I is the indetermina
y lo
us of f .
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