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Intro duction

This document was written during the author's internship at the Oxford Mathematical Institute,

from June 20 to August 19 2011, under the supervision of Dr. Cornelia Drutu. This internship

was endorsed by both the École Normale Supérieure de Cachan and the University of Oxford.

Abstract

In this rep ort we will lo ok into a few prop erties of expander graphs. Expander families are collection

of graphs whose "robustness" (i.e connectivity) we can accurately control as their numb er of vertices

increases ; and as such may b e used to conceive computers networks, amongst other applications.

We will b egin our journey by examining two ways of de�ning graph expansion, namely using

cardinality arguments and sp ectral theory. Then we will move on to some basic prop erties of

expander families b efore trying to know whether or not the natural metrics on such graphs can b e

accurately represented by our standards, "nature�friendly" `2 metrics.

In a second part, we will present a well known example of expander family : the Margulis

graphs. In order to do this, we will �rst need to dabble into Kazhdan's prop erty (T ) and more

precisely try and �nd out whether the sp ecial linear groups SLn (Z) have this prop erty or not.

In order to keep this rep ort as self�inclusive as p ossible, we included a few app endices aiming

to provide the reader with (almost) all the prerequisites needed to fully understand this do cument.

Each app endix also provides a list of references for further reading on the asso ciated topic.
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Notations

Throughout this do cument, we will b e using the following notations :

Generic Notations

� [n] denotes the set f 1; : : : ; ng � N ;

� j Aj denotes the cardinality of any �nite set A ;

� e denotes the vector

0

B
@

1
.

.

.

1

1

C
A .

Linear Algebra

� t U denotes the transp ose of the matrix U ;

� L (V ) denotes the set of all linear mappings on a vector space V ;

� P (V ) denotes the set of all orthogonal pro jections on a vector space V ;

� Sn (R) denotes the space of symmetric real n � n matrices ;

� S+
n (R) denotes the space of p ositive semide�nite symmetric real n � n matrices.

Top ology and Measure Theory

� B (X ) denotes the set of Borel sets on a top ological space X ;

� B (x; r ) denotes the op en ball of center x and radius r for the relevant distance ;

� B(x; r ) denotes the closed ball of center x and radius r for the relevant distance ;

� conv(X ) denotes the closed convex hull of a set X ;

� the notation K �� X mean that K is a compact subset of the top ological space X .

Computational Complexity

� 
( f (n)) is the class of all functions g : N ! R such that :

9N 2 N; 9C > 0; 8n � N; g(n) � Cf (n)

� �( f (n)) is the class of all functions g : N ! R such that :

9N 2 N; 9C; D > 0; 8n � N; Df (n) � g(n) � Cf (n)



Chapter 1

Expander Graphs

In this chapter, we consider a �nite nonempty d�regular graph G = ( V; E) . Let n b e the cardinality

of its vertex set V , which we identify to the set [n] for practical reasons. If the reader is not really

into graphs, we recommend that he'd check app endix A.1 b eforehand.

1.1 Graph Expansion

In this section we lay out the fundamentals of graph expansion, in order to de�ne an expander

graph. Since the expander prop erty is one of "robustness", we will need to give ourselves mean to

evaluate how strongly connected a set of vertices is, relatively to its inner complexity.

De�nition 1.1.1 (Restricted Edge Set)

Let S; T � V .

We denote the set of edges from S to T by :

E(S; T) := f (u; v) 2 E j u 2 S; v 2 Tg

Remark : We will simply denote E(S; S) by E(S) .

De�nition 1.1.2 (Edge Boundary, Expansion Ratio)

Let S � V .

(i) We de�ne the edge boundary of S by :

@S:= E(S; Sc)

(ii) We de�ne the expansion ratio (also cal led Cheeger constant) of the graph G by :

h(G) := min
;  S � V
jSj� n

2

j@Sj
jSj

The expansion ratio of a graph gives us a mean to estimate the robustness of the asso ciated

"network". More precisely, if given a subset S � V , having a high enough

j@Sj
jSj ratio means that

said subset is di�cult to disconnect from the remainder of the graph in regard of its inner com-

plexity.

De�nition 1.1.3 (Expander Graph)

Let c > 0.

We say that the graph G is an (n; d; c) �expander graph if for every subset S � V , we have :

j@Sj � c
�

1 �
jSj
n

�
jSj

Remark : Plainly, any �nite connected d�regular graph is an expander for some c > 0.
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8 CHAPTER 1. EXPANDER GRAPHS

Example (with an in�nite graph) : Let L(a; b) denote the free group with two generators a
and b, then consider its Cayley graph G := C(L (a; b); f a; b; a� 1; b� 1g (see

1.1

�g. 1.1). It is relatively

easy to see that this graph do esn't make a "go o d" expander. Indeed, it su�ces to "cut" one edge

to completely disconnect any of the four ma jor branches from the rest of the graph.

Figure 1.1: Cayley Graph of the Free Group (Rough Sketch)

We wish here to prove the existence of families of graphs whose "robustness" c we can control

when their size increases. Such collections of graphs are called families of expanders.

De�nition 1.1.4 (Family of Expander Graphs)

Let (Gi ) i 2 N be a sequence of d�regular graphs.

We say that (Gi ) i is a family of expander graphs if :

(i) the sequence (jV (Gi )j) i is increasing ;

(ii) there exists c > 0 such that 8i � 0; h(Gi ) � c.

Remark : There isn't any nontrivial example of "interesting" such families. We direct the

reader to section 2.3 for an example construction metho d for families of expanders.

1.2 A Sp ectral Approach of Expanders

Sp ectral graph theory o�ers us another way to characterize graph expansion. Indeed, we will show

in this section that the expansion ratio of a graph is fully determined by its sp ectral gap.

1.1

The reader certainly did notice that this is only a �nite "approximation" of the actual Cayley graph. Drawing

in�nite graph can indeed get quite painful.
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1.2.1 Graph Sp ectrum

De�nition 1.2.1 (Adjacency Matrix)

We cal l adjacency matrix of the graph G the matrix A(G) = ( au;v )u;v 2 [n ] 2 M n (R) where au;v is

equal to one if (u; v) 2 E and else is zero.

Remark : A(G) 2 Sn (R) , therefore has n real eigenvalues � 1 � : : : � � n , to which we asso ciate

an orthonormal system of eigenvectors v1; : : : ; vn so that 81 � i � n we have A(G)vi = � i vi . Note

that when need b e we will denote these eigenvalues (resp. eigenvectors) by � i (G) (resp. vi (G) )

to avoid any ambiguity. We also denote by � := max( j� 2 j; j� n j) the largest absolute value of an

eigenvalue of G that isn't � 1 .

De�nition 1.2.2 (Graph Sp ectrum)

We cal l spectrum of the graph G the set Sp(G) := f � 1; : : : ; � n g.

Prop osition 1.2.1

The fol lowing properties hold :

(i) � 1 = d and we can choose v1 =
1

p
n

e ;

(ii) G is connected , � 1 > � 2 .

Proof :

(i ) It is clear that d is an eigenvalue of A b ecause since G is d�regular we have :

8i 2 [n];
nX

j =1

ai;j = d (1.1)

Now let � b e any eigenvalue of A and let v b e an asso ciated eigenvector. Since v 6= 0 , we can

normalize v so that there exists i 2 [n] such that vi = 1 and 8j 2 [n]; jvj j � 1 (replace v by

v
maxj jvj j

). Now remark that :

�v i =
nX

j =1

ai;j vj

Thus :

j� j =

�
�
�
�
�
�

nX

j =1

ai;j vj

�
�
�
�
�
�

�
nX

j =1

jai;j vj j

�
nX

j =1

jai;j j

= d since G is d�regular and 8j 2 [n]; ai;j � 0

Therefore, d is A 's largest eigenvalue.

(ii ) If G isn't connected then A(G) is blo ck diagonal with at least 2 distinct blo cks, and so

its characteristic p olynomial � is a pro duct of at least two characteristic p olynomials of

matrices satisfying (1.1). Therefore (X � d)2j� and so � 2 = d = � 1 . Conversely, supp ose

that G is connected and let v b e any � 1 eigenvector for A and rescale v such that its entry

of largest absolute value vi is one. Therefore, we have that (Av) i = dvi = d. Now since

(Av) i =
P n

j =1 ai;j vj , with the ai;j 2 f 0; 1g, then at least d � 1 other entries vj are ones.

Recall that G is connected and so A isn't blo ck diagonal which implies that by rep eating this

pro cess with these other vj = 1 , we �nd that all entries in v are ones. Ergo v = e and so any

� 1 eigenvector is a scalar multiple of e and so � 1 6= � 2 . The pro of is thus concluded.
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We now de�ne the sp ectral gap of a graph as (surprisingly enough) the distance b etween its

two largest eigenvalues. We will show later on that this quantity can fully control the graph's

expansion ratio.

De�nition 1.2.3 (Sp ectral Gap)

We cal l spectral gap of the graph G the real number g(G) de�ned by :

g(G) := � 1 � � 2 = d � � 2

The following lemma gives us a mean to compare any graph to its uniform random counterpart,

in some sense.

Lemma 1.2.1 (Expander Mixing Lemma)

Recal l that G is d�regular.

Let � := max( j� 2 j; j� n j) be the largest absolute value of an eigenvalue of G that isn't � 1 .

Then, for al l S; T � V :

�
�
�
� jE (S; T)j �

djSjjT j
n

�
�
�
� � �

p
jSjjT j

Remark : jE (S; T)j is the actual numb er of edges b etween S and T and

djSjjT j
n

is the exp ected

numb er of such edges in a random graph of edge density

d
n

. A small � thus implies that the graph

G is nearly random in some sense.

Proof : Let 1S (resp. 1T ) b e the characteristic vector of S (resp. T ), i.e the vector whose

v �th co ordinate (for v 2 V ) is equal to one if v 2 S (resp. T ), and to zero if v =2 S (resp. T ). We

then express those two vectors in the system (v1; : : : ; vn ) :

1S =
nX

i =1

ai vi and 1T =
nX

i =1

bi vi

Then :

jE (S; T)j = t 1SA1T

=

 
nX

i =1

at
i vi

!

A

0

@
nX

j =1

bj vj

1

A

=
nX

i =1

� i ai bi

= da1b1 +
nX

i =2

� i ai bi since � 1 = d

Recall that since the system (v1; : : : ; vn ) is orthonormal, we have (for any index i ) ai = h1S ; vi i

and bi = h1T ; vi i . In particular, a1 =
jSj
p

n
and b1 =

jT j
p

n
, therefore we have :

jE (S; T)j = d
jSjjT j

n
+

nX

i =2

� i ai bi
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We also have :

�
�
�
�
�

nX

i =2

� i ai bi

�
�
�
�
�

�
nX

i =2

j� i ai bi j

� �
nX

i =2

jai bi j

� �
nX

i =1

jai bi j

= � h1S ; 1T i

� � k1Skk1T k by Cauchy�Schwarz

= �
p

jSjjT j

Hence : �
�
�
� jE (S; T)j �

djSjjT j
n

�
�
�
� =

�
�
�
�
�

nX

i =2

� i ai bi

�
�
�
�
�

� �
p

jSjjT j

1.2.2 Link Between Sp ectral Gap and Expansion

In this subsection, we will prove that under certain conditions, a large sp ectral gap is equivalent to

a high expansion ratio for the graph G , namely we can relate the variations of its expansion ratio

h(G) to those of its sp ectral gap. But �rst, we need to de�ne a couple op erators on the mappings

"related" to G .

De�nition 1.2.4 (Laplacian)

We de�ne the Laplacian operator on mappings f : V ! R as L := dI n � A(G) , i.e for any such

mapping f we have :

8x 2 V; Lf (x) := df (x) � (A(G)f )(x)

De�nition 1.2.5 (Divergence)

We de�ne the divergence of a mapping g : E ! R as fol lows :

8x 2 V; Kg(x) :=
X

e2 E exits x

g(e) �
X

e2 E enters x

g(e)

=
X

y j (x;y )2 E

g(x; y) �
X

y j (y;x )2 E

g(y; x)

- Note that if f : V ! R is a real mapping on V we have :

kt fK k2 =
X

(u;v )2 E

(f (u) � f (v))2 = t fLf

We now aim to demonstrate the following prop osition, which links the graph's expansion ratio

and its sp ectral gap :

Prop osition 1.2.2

Suppose G connected.

Then :

g(G)
2

� h(G) �
p

2dg(G)

Proof : We b egin by proving the left inequality :

d � � 2

2
� h(G) . First, consider a subset S � V

such that h(G) =
j@Sj
jSj

and jSj �
n
2

, then de�ne the function f := jScj 1 S � j Sj 1 Sc
. Note that we

have :

kf k2 = jScj2jSj + jSj2jScj = ( jSj + jScj)jSjjScj = njSjjScj
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We also have :

t fA (G)f =
X

x 2 V

f (x)
X

y2 V

ax;y f (y) if we denote by ax;y the co e�cients of A(G)

=
X

x 2 S

f (x)
X

y2 V

ax;y f (y) +
X

x 2 Sc

f (x)
X

y2 V

ax;y f (y)

=
X

x 2 S

jScj

0

@
X

y2 S

ax;y jScj +
X

y2 Sc

ax;y jSj

1

A +
X

x 2 Sc

jSj

0

@
X

y2 S

ax;y jScj +
X

y2 Sc

ax;y jSj

1

A

= 2( jE (S)jjScj2 + jE(Sc)jjSj2 � j SjjScjj@Sj)

Since G is d�regular, we have jE (S)j = djSj � j @Sj and jE (Sc)j = djScj � j @Sj therefore :

t fA (G)f = ndjSjjScj � n2j@Sj

Thus :

� 2 �
t fA (G)f

kf k2

=
ndjSjjScj � n2j@Sj

njSjjScj

= d �
nj@Sj
jSjjScj

� d � 2h(G) since jScj �
n
2

Let us now prove the right inequality : h(G) �
p

2d(d � � 2) . Since the asso ciated eigenvector

v2 is orthogonal to e =

0

B
@

1
.

.

.

1

1

C
A , it necessarily has b oth p ositive and negative entries, thus we de�ne

f := v+
2 (i.e f : v 7! max(v2(v); 0)) and V + := supp( f ) . We can assume, by replacing v2 with � v2

if necessary, that jV + j �
n
2

and we aim to prove the two following inequalities :

(i )
t fLf
kf k2 � d � � ;

(ii )
h(G)2

2d
�

t fLf
kf k2 .

To prove (i ) , take x 2 V +
and compute :

Lf (x) = df (x) �
X

y2 V

ax;y f (y)

= dv2(x) �
X

y2 V +

ax;y v2(y)

� dv2(x) �
X

y2 V

ax;y v2(y) since 8y =2 V + ; v2(y) � 0

= Lv2(x)

= dv2(x) � A(G)v2(x)

= ( d � � )v2(x)
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As 8x =2 V + ; f (x) = 0 , we have :

t fLf =
X

x 2 V

f (x)Lf (x)

�
X

x 2 V

f (x)(d � � )v2(x)

= ( d � � )
X

x 2 V +

v2
2(x)

= ( d � � )
X

x 2 V

f 2(x)

= ( d � � )kf k2

Hence the result. In order to now prove (ii ) , intro duce this other quantity :

Bf :=
X

(x;y )2 E

jf 2(x) � f 2(y)j

We now aim to prove the following inequality, which implies (ii ) since kt fK k2 = t fLf :

h(G)kf k2 � Bf �
p

2dkt fK kkf k

For ease of notation, we consider that V = [ n] is ordered so that f (1) � : : : � f (n) . To obtain the

right inequality, one just has to pursue the following computation :

Bf =
X

(x;y )2 E

jf 2(x) � f 2(y)j

=
X

(x;y )2 E

jf (x) + f (y)jj f (x) � f (y)j

�
s X

(x;y )2 E

(f (x) + f (y))2

s X

(x;y )2 E

(f (x) � f (y))2
by Cauchy�Schwarz

=
s X

(x;y )2 E

(f (x) + f (y))2kt fK k

�
s

2
X

(x;y )2 E

f (x)2 + f (y)2kt fK k

=
s

2d
X

x 2 V

f 2(x)kt fK k

=
p

2dkt fK kkf k
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The left inequality then stems from another calculation on Bf :

Bf �
X

x;y 2 E
x<y

(f 2(x) � f 2(y))

=
X

x;y 2 E
x<y

y � 1X

i = x

(f 2(i ) � f 2(i + 1))

=
n � 1X

i =1

(f 2(i ) � f 2(i + 1)) j@[i ]j

=
X

i 2 V +

(f 2(i ) � f 2(i + 1)) j@[i ]j

� h(G)
X

i 2 V +

(f 2(i ) � f 2(i + 1)) i

= h(G)
X

i 2 V +

f 2(i ) by collapsing the telescopic sum and remarking that f (jV + j + 1) = 0

= h(G)kf k2

We then have inequality (ii ) , which ends the pro of.

1.2.3 Diameter of Expander Graphs

In this subsection we aim to prove that the diameter of an expander graph is O(log(n)) . We

call diameter of a graph G = ( V; E) the following integer (de�ned exactly as is usually done for

b ounded metric spaces) :

diam(G) := max
x;y 2 V

dG (x; y)

Lemma 1.2.2

Let G = ( V; E) be a (n; d; c) �expander graph.

Let r > 0
Suppose that jB(x; r )j �

n
2

.

Then :

9" > 0; jB (x; r + 1) j � (1 + " )jB (x; r )j

Proof : Let S := B (x; r ) and remark that :

jB (x; r + 1) j = jSj + j@Sj

Then, by expander prop erty :

jB (x; r + 1) j = jSj + j@Sj � j Sj + c
�

1 �
jSj
n

�
jSj

� j Sj
�

1 + c
�

1 �
1
2

��
since jSj �

n
2

=
�

1 +
c
2

�
jSj

The result then follows with " :=
c
2

.

Prop osition 1.2.3

Let G = ( V; E) be a (n; d; c) �expander graph.

Then diam(G) = O(log(n)) .

Proof : Let x 2 V . Supp ose that 8r > 0; jB(x; r )j �
n
2

. Then, by lemma 1.2.2 we have :

8r > 0; 9" > 0; jB (x; r + 1) j � (1 + " )jB (x; r )j > jB(x; r )j
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So the sequence (jB(x; r )j)r 2 N�
is an increasing sequence of integers and so jB(x; r )j ���!

r !1
1 ,

which is imp ossible since V is �nite. Thus :

8x 2 V; 9r (x) > 0; jB(x; r (x)) j >
n
2

Now let r := max x 2 V r (x) . Since V is �nite, r is well de�ned and so we have :

9r > 08x 2 V; jB(x; r )j >
n
2

Furthermore, since the ball B(x; r ) contains less than dr
elements (as G is d�regular), we can take r

so that dr � n (another way to achieve this is to set for every x r (x) := min
n

� > 0
�
�
� jB(x; � )j >

n
2

o
)

and so r � logd(n) . Hence we have proved that :

9r = O(log(n)) ; 8x 2 V; jB(x; r )j >
n
2

Now �x x 2 V and supp ose that there exists y 2 V such that dG (x; y) > 2r . Then we naturally

have :

B(x; r ) \ B(y; r ) = ;

But this last equality is clearly false, since b oth jB(x; r )j and jB(y; r )j are over

n
2

. Thus there is

no such vertex y , henceforth V = B(x; 2r ) . This in turn implies that :

diam(G) � 4r = O(log(n))

1.3 Metric Emb eddings of Expander Graphs

The metric emb edding problem for graphs can b e summed up as follows : given a �nite graph G ,

how well can the asso ciated metric dG b e approximated by an Euclidean metric ? In particular,

we will interest ourselves in the emb edding of expander graphs into `2 spaces. But �rst, we need

to de�ne what we mean by "approximated by an Euclidean metric".

1.3.1 Some Generic Results

De�nition 1.3.1 (Metric Emb edding)

Let (X; d ) and (Y; e) be two metric spaces.

We say that a map f : X ! Y is a metric embedding if f : X ! f (X ) is an homeomorphism.

Remark : In particular, any metric emb edding is injective and continuous.

De�nition 1.3.2 (Expansion, Contraction and Distortion)

Let (X; d ) be a �nite metric space.

Let f : X ! Rn
.

We then de�ne the fol lowing quantities :

(i) the expansion of f :

e(f ) := max
x;y 2 X

kf (x) � f (y)k
d(x; y)

(ii) the contraction of f :

c(f ) := max
x;y 2 X

d(x; y)
kf (x) � f (y)k

(iii) the distortion of f :

@(f ) := e(f ) � c(f )
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b
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b b

1

3
2

4

Figure 1.2: A very simple � although nontrivial � graph.

So our problem can b e formulated as follows : given a �nite graph G = ( V; E) , what is the

minimum distortion an emb edding f : (G; dG ) ! `n
2 can achieve ? The b est scenario would b e to

have @(f ) = 1 (in such a case, we say that f is without distortion), but this obviously can only

happ en in very sp eci�c

1.2

cases : indeed, even very simple graphs

1.3

like the one in Fig. 1.2 can

not b e emb edded without distortion.

Let us see why such a graph (let's call it G = ( V; E) ), simple as it may b e, do es not "�t" in

any Euclidean metric, not matter how high the dimension. Supp ose that we have a distortion�free

emb edding f : V ! Rn
, such that @(f ) = 1 . Then, as dG (1; 4) = dG (3; 4) = dG (2; 4) = 1 and

dG (i; j ) = 2 for all other pairings of i; j 2 [4], then, if we denote the `2 norm by k:k , we must have

kf (1) � f (4)k = kf (3) � f (4)k = kf (2)f (4)k = 1 and kf (i ) � f (j )k = 2 otherwise, which implies

that f (1); f (2) and f (4) must b e aligned, as do f (1); f (2) and f (3) . All in all, all the p oints of our

emb edded graph must b e on the same line, which contradicts the distance conditions previously

stated.

The �rst result we will prove here is a very general one, which we can apply to any �nite metric

space (and so to any �nite graph) :

Prop osition 1.3.1

Let (X; d ) be a �nite metric space of cardinality n .

Let p > 2.

Then there exists Q = O(log(n)2) such that we can �nd in polynomial time (in n ) an embedding

f : X ! `Q
p so that @(f ) = O(log(n)) .

Proof : Consider x; y 2 X such that x 6= y and set � 0 = 0 . Then, whenever such a thing is

p ossible, de�ne � t ( t 2 N�
) to b e the minimal radius so that the following conditions are satis�ed :

1. jB(x; � t )j � 2t
;

2. jB(y; � t )j � 2t
;

3. � t �
1
4

d(x; y) .

Then let

bt b e the largest integer t such that we can de�ne such a radius � t and set � bt +1 :=
1
4

d(x; y) .

Lastly, remark that :

8i; j 2 [bt + 1] ; B(y; � j ) \ B(x; � i ) = ;

Also observe that, for any A � X and t 2 [bt], we have :

A \ B (x; � t ) = ; , d(x; A ) � � t

And :

A \ B(y; � t ) 6= ; , d(y; A) � � t

1.2

By "sp eci�c" we mostly mean "not so interesting" . . .

1.3

At this p oint, we will b e very upset if we hear ab out the empty graph . . .
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Thus, if A \ B (x; � t ) = A \ B(y; � t � 1) = ; , then :

jd(y; A) � d(x; A )j � � t � � t � 1

Now �x t 2 [bt]. By exchanging if necessary the roles played by x and y , we can also assume that

jB(x; � t )j < 2t
, which implies that jB(y; � t � 1)j � 2t

and so any random set of size �
� n

2t

�
has the

same probability of b oth intersecting B(y; � t � 1) and missing (i.e not intersecting) B(x; � t ) .

Randomly select q = O(log(n)) sets A1; : : : ; Aq � X of cardinality 2m (t )
, where :

m(t) := min
n

k 2 N
�
�
� 2k �

n
2t +1

o

So, with high probability (rememb er that we are lo oking for an algorithm), at least

q
10

of the

chosen sets will intersect B(y; � t � 1) but not B(x; � t ) . Also note that this also holds for t = bt + 1
since we only want to miss a set of cardinality less than 2bt+1

and intersect one of cardinality greater

or equal to 2bt
.

Thus, for almost every choice of A1; : : : ; Aq and any t 2 [bt + 1] , we have :

qX

i =1

jd(x; A i ) � d(y; A i )j � log(n)
� t � � t � 1

10

Now rep eat this for every t 2 [bt + 1] . We now have Q = O(log(n)2) sets A1; : : : ; AQ � X such that

:

QX

i =1

jd(x; A i ) � d(y; A i )j �
log(n)

10

bt +1X

i =1

� i � � i � 1

=
log(n)

10
(� bt +1 � � 0|{z}

=0

� log(n)
d(x; y)

40

Remark that for any A i , jd(x; A i ) � d(y; A i )j � d(x; y) and so, since Q = O(log(n)2) , there exists

C > 0 such that :

QX

i =1

jd(x; A i ) � d(y; A i )j � C log(n)2d(x; y)

Now show that the following mapping is a metric emb edding with distortion O(log(n)) :

f : X ! `Q
p

x 7!

 
d(x; A i )

Q
1
p

�
�
�
�
�

i 2 [Q]

!

Indeed, if we �x x; y 2 X and set � (x; y) = kf (x)� f (y)k then, since for any A i , jd(x; A i )� d(y; A i )j � d(x; y) ,

� (x; y) � d(x; y) and :

d(x; y) �
40

log(n)

QX

i =1

jd(x; A i ) � d(y; A i )j

= O

 
log(n)

n

QX

i =1

jd(x; A i ) � d(y; A i )j

!

= O(log(n)� (x; y))

In conclusion, we did prove that it was p ossible to �nd such an emb edding f in p olynomial time,

as claimed.

De�nition 1.3.3

Let (X; d ) be a �nite metric space.

We denote the least distortion with which X may be embedded into `p (of any dimension) by cp(X ) .
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Remark : One deduces from prop osition 1.3.1 that for any p > 2 cp(X ) = O(log(jX j) . We will

show later on that this holds if p = 2 for expander graphs.

Let us now prove another computational result. But �rst, we recall the following lemma from

linear algebra :

Lemma 1.3.1

A matrix M 2 M n (R) is positive semide�nite if and only if there exists another matrix A 2 M n (R)
such that M = t AA .

Also remark that for any emb edding f of a �nite metric space (X = f x1; : : : ; xN g; d) into `p ,

we can scale f so that c(f ) = 1 thus for every 
 > 0 we have :

@(f ) � 
 , 8 i; j 2 [N ]; d(x i ; x j )2 � k f (x i ) � f (x j )k2 � 
 2d(x i ; x j )2
(1.2)

Now we prove the computational result we promised :

Prop osition 1.3.2

Let (X = f x1; : : : ; xn g; d) be a �nite metric space.

Then there exists a polynomial time algorithm which computes c2(X ) .

Proof : Let f : X ! `n
2 b e an emb edding and, for all i 2 [n], set ui := f (x i ) . Now let U 2 M n (R)

b e the matrix whose rows are the vectors ui and let Z := U t U . With these notations we have :

kui � uj k2 = zi;i + zj;j � 2zi;j

Finding f satisfying (1.2) for any given 
 > 0 is thus equivalent to �nding a matrix Z 2 S+
n (R)

such that :

8i; j 2 [n]; d(x i ; x j )2 � zi;i + zj;j � 2zi;j � 
 2d(x i ; x j )2
(1.3)

Therefore c2(X ) � 
 if and only if we can �nd a matrix Z 2 S+
n (R) satisfying (1.3). The result

now stems from the fact that such an optimisation problem can b e solved in p olynomial time using

the ellipsoid algorithm (cf. [Aro05] for more details).

We now close on the main theorem of this section : an explicit formula for c2(X ) , coming from

a pap er by Linial, London and Rabinovich (cf. [LLR95]). But we �rst need to recall yet another

linear algebra result.

Lemma 1.3.2

Let Z 2 M n (R) .

Then :

Z 2 S+
n (R) , 8 Q 2 S+

n (R);
nX

i =1

nX

j =1

qi;j zi;j � 0

In light of this lemma, the optimization problem alluded earlier can b e reformulated as follows

(note also that the following reformulation is "easier" to feed to the ellipsoid algorithm) :

Problem (P1)

Let (X = f x1; : : : ; xn g; d) be a �nite metric space.

Let 
 > 0.

Find a matrix Z 2 M n (R) such that :

8Q 2 S+
n (R);

nX

i =1

nX

j =1

qi;j zi;j � 0 (1.4)

8i; j 2 [n]; zi;i + zj;j � 2zi;j � d(x i ; x j )2
(1.5)

8i; j 2 [n]; zi;i + zj;j � 2zi;j � 
 2d(x i ; x j )2
(1.6)

We will now use the fact that problem (P1) for any given 
 > 0 is equivalent to c2(X ) � 
 to

prove this section's main theorem, which is the following :
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Theorem 1.3.3 (Linial � London � Rabinovich)

Let (X; d ) be a �nite metric space.

Then :

c2(X ) = max
Q 2 S +

n ( R)
Qe=0

vu
u
u
t

P
i;j 2 [n ]
qi;j > 0

qi;j d(x i ; x j )2

�
P

i;j 2 [n ]
qi;j < 0

qi;j d(x i ; x j )2

Proof : Let 
 < c 2(X ) b e a p ositive real numb er. Since (P1) for 
 is equivalent to the fact that


 � c2(X ) , any nonnegative linear combination of the constraints (1.4), (1.5) and (1.6) applied to


 must yield a contradiction. So we apply the following steps to the aforementioned constraints :

� if qi;j = 0 , multiply any constraint in (P1) involving zi;j by 0 ;

� if qi;j > 0, multiply the constraints of typ e (1.5) involving zi;j by

qi;j

2
;

� if qi;j < 0, multiply the constraints of typ e (1.6) involving zi;j by

qi;j

2
.

Now we cho ose Q so that Qe = 0 , i.e :

8i 2 [n];
nX

j =1

qi;j = 0

Then, by combining the constraints in (P1), we obtain :

X

i;j 2 [n ]
qi;j > 0

qi;j d(x i ; x j )2 + 
 2
X

i;j 2 [n ]
qi;j < 0

qi;j d(x i ; x j )2 � 0 (1.7)

Since 
 < c 2(X ) , then (1.7) is false and thus we must have :


 2 <

P
i;j 2 [n ]
qi;j > 0

qi;j d(x i ; x j )2

�
P

i;j 2 [n ]
qi;j < 0

qi;j d(x i ; x j )2 (1.8)

And so :


 <

vu
u
u
t

P
i;j 2 [n ]
qi;j > 0

qi;j d(x i ; x j )2

�
P

i;j 2 [n ]
qi;j < 0

qi;j d(x i ; x j )2

Which implies that :

c2(X ) < max
Q 2 S +

n ( R)
Qe=0

vu
u
u
t

P
i;j 2 [n ]
qi;j > 0

qi;j d(x i ; x j )2

�
P

i;j 2 [n ]
qi;j < 0

qi;j d(x i ; x j )2

Now take 
 � c2(X ) . Then (1.7) must hold since it is a linear combination of the constraints

in (P1) and so :


 �

vu
u
u
t

P
i;j 2 [n ]
qi;j > 0

qi;j d(x i ; x j )2

�
P

i;j 2 [n ]
qi;j < 0

qi;j d(x i ; x j )2

Therefore we have :

c2(X ) � max
Q 2 S +

n ( R)
Qe=0

vu
u
u
t

P
i;j 2 [n ]
qi;j > 0

qi;j d(x i ; x j )2

�
P

i;j 2 [n ]
qi;j < 0

qi;j d(x i ; x j )2

Thus the pro of is concluded.
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1.3.2 Emb edding Expander Graphs into `2 Spaces

We will now try to answer our op ening question : how accurately can we approximate an expander

graph's metric using `p metrics ? We will fo cus on the `2 case and show that the graph metric of

an expander is as far from an `2 metric as p ossible.

First, consider a k �regular graph G = ( V = f v1; : : : ; vn g; E) , with jV j = n and k � 3 (thus

n � 4). Assume that there exists a p ositive " such that � 2(G) � k � " . Then we de�ne the following

emb edding (where (ei ) i 2 [n ] denotes the canonical basis of Rn
) :

f : V ! `n
2

vi 7!
eip

2

This emb edding maps the vertex set V onto the simplex. Moreover, for all i; j 2 [n], we have :

kf (vi ) � f (vj )k =
1

p
2

kei � ej k =

p
2

p
2

= 1

And thus :

c(f ) = max
i;j 2 [n ]

dG (x i ; x j ) = diam( G)

Moreover, since 8i; j 2 [n]; dG (x i ; x j ) � 1 and there exist i; j 2 [n] such that dG (x i ; x j ) , then :

e(f ) = max
i;j 2 [n ]

1
dG (x i ; x j )

= 1

Now, if G is an expander we know that diam(G) = O(log(n)) and so any expander graph can

b e emb edded into `2 by mean of this mapping f with distortion @f= O(log(n)) . We will now aim

to prove that this emb edding is optimal , up to a multiplicative constant indep endent of n .

- For the remainder of this subsection, we consider an (n; k; c) �expander graph G = ( V; E) , with

n � 0[2] and k � 3.

Lemma 1.3.3

Let H := ( V; E0) be the spanning subgraph of G whose edge set E 0
is de�ned as fol lows :

E 0 := f (e; f ) 2 V 2 j dG (e; f ) � b logk (n)cg

Then H has a perfect matching.

Proof : Since G is k �regular, any vertex in G has less than kr
vertices within distance r for

any r � 0, so if we take r := blogk (n)c � 1 then kr �
n
2

thus H has minimal degree of at least

n
2

. Therefore, by the Dirac theorem (theorem A.1.3), H has a Hamilton cycle and thus a p erfect

matching (since n is even).

The next result, another theorem by Linial, London and Rabinovich, proves that the estimate

in O(log(n)) is optimal for expander graphs. One may �nd the condition � 2(G) � k � " arti�cial,

but it is in fact redundant with the k �regular and connected nature of the expander graph studied

(see prop osition 1.2.1, (i ) and (ii ) ).

Prop osition 1.3.4 (Linial � London � Rabinovich )

Assume that there exists " > 0 such that � 2(G) � k � " .

Then c2(G) = 
(log( n)) and the implicit constant depends only on k and " .

Proof : De�ne a subgraph H of G as in lemma 1.3.3. We know that H has a p erfect matching,

whose adjacency matrix we denote by B . De�ne the following matrix :

P := kI n � A(G) +
"
2

(B � I n )
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Now remark that if, for any i; j 2 [n], bi;j = 1 , then as dG (i; j ) � b logk (n)c > 1 then ai;j = 0 .

Therefore, if furthermore i 6= j , pi;j =
"
2

. If on the contrary bi;j = 0 and i 6= j then pi;j = � ai;j 2 f 0; 1g.

From this we deduce two things. First :

�
X

i;j 2 [n ]
pi;j < 0

pi;j dG (i; j )2 =
X

i;j 2 [n ]
pi;j < 0

dG (i; j )2

=
nX

i =1

X

j 2 [n ]
pi;j < 0

dG (i; j )2

For any given i 2 [n], there are less than kblog k (n )c � n vertices within distance blogk (n)c. We've

seen that to have pi;j < 0 (we only consider the case i 6= j since d(i; i )2 = 0 ) we need to have

ai;j = 1 and so dG (i; j ) = 1 . Therefore :

�
X

i;j 2 [n ]
pi;j < 0

pi;j dG (i; j )2 =
nX

i =1

X

j 2 [n ]
pi;j < 0

1

=
nX

i =1

k since A is k �regular and therefore for any i , ai;j = 1 for exactly k values of j

= nk

On the other hand :

X

i;j 2 [n ]
pi;j > 0

pi;j dG (i; j )2 =
X

i;j 2 [n ]
bi;j =1

pi;j dG (i; j )2

�
"
2

X

i;j 2 [n ]
bi;j =1

blogk (n)c2

�
"
2

nblogk (n)c2

In �ne, we have :

c2(X ) �
"

2k
blogk (n)c2 = 
(log( n))

And so the pro of is complete.

To put this result into p ersp ective, we recall the following theorem :

Theorem 1.3.5 (Bourgain)

Any �nite metric space of cardinality n � 1 can be embedded into any `p space ( p > 0) with

distortion O(log(n))

One consequence of this result is that, basically, there is nothing worse than expander graphs

when it comes to metric emb eddings. Indeed, the upp er b ound on the c2 constant given by Bourgain

is in this case optimal, as we just proved. This justi�es our earlier saying that expander graphs

where "as far as p ossible" from `2 metrics.
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Chapter 2

The Margulis Construction

In this chapter, we give our �rst

2.1

example of expander family. Since this construction, named

after its creator Grigory Margulis, makes heavy use of Kazhdan's prop erty (T ) we will b egin by

proving a few related results.

2.1 Kazhdan Groups

This �rst section recalls the basics of Kazhdan groups theory. The reader already familiar with

these may turn to section 2.2 (or even 2.3 if he is also familiar with the Kazhdan constants of

SLn (Z) ). On the other hand, those struggling with representation theory may �nd some comfort

2.2

in app endix A.2.

De�nition 2.1.1 (Almost Invariant Vectors)

Let G be a topological group.

Let (�; H ) be a unitary representation of G .

(i) Consider Q � G and " > 0. We say that a vector � 2 H is (Q; " ) �invariant if :

sup
x 2 Q

k� (x)� � � k < " k� k

(ii) We say that (�; H ) almost has invariant vectors if the representation (�; H ) has a (Q; " )
invariant vector for any compact subset Q �� G and any positive real number " .

Remark : � 2 H is (Q; " ) �invariant if and only if it is (Q [ Q� 1; " ) �invariant. This follows from

the fact that 8g 2 G; k� (g)� � � k = k� (g� 1)� � � k .

De�nition 2.1.2 (Kazhdan Group)

Let G be a topological group.

(i) We say that a subset Q � G is Kazhdan if there exists " > 0 such that every unitary

representation of G which has a (Q; " ) �invariant vector also has a nontrivial invariant vector.

Any such " is cal led a Kazhdan Constant for Q and (Q; " ) is cal led a Kazhdan pair for G .

(ii) G is said to be a Kazhdan group, or to have property (T ) , if it has a compact Kazhdan subset.

- We will now denote by � 0 the one�dimensional trivial representation on a top ological group G .

De�nition 2.1.3 (Kazhdan Constant)

Let G be a topological group.

Let (�; H ) be a unitary representation of G .

Let Q �� G .

We de�ne the Kazhdan constant of G associated to Q and � as fol lows :

� (G; Q; � ) := inf
� 2H ; k� k=1

max
x 2 Q

k� (x)� � � k

2.1

And only . . .

2.2

Or at least, we hop e, some measure of relief.

23
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We also de�ne the Kazhdan constant of G and Q as the lower bound (on � ) of such constants :

� (G; Q) := inf
� unitary representation

� (G; Q; � )

Remark : Under these circumstances, it is clear that for any unitary representation � we have

that :

� 0 / � , 8 Q �� G; � (G; Q; � ) = 0

Therefore :

G has prop erty (T ) , 9 Q �� G; � (G; Q) > 0 (2.1)

If this is the case, then the Kazhdan constant � (G; Q) is the optimal " such that (Q; " ) is a Kazhdan

pair.

Let us now intro duce our �rst example family of Kazhdan groups : the compact groups.

Prop osition 2.1.1

Let G be a topological group.

Then (G;
p

2) is a Kazhdan pair. In particular, every compact group has property (T ) .

Proof : Let (�; H ) b e a unitary representation of G which has a unit vector � such that :

sup
x 2 G

k� (x)� � � k <
p

2

Also de�ne C := conv(� (G)� ) � H . Then 9!� 0 2 C; k� 0k = min � 2 C k� k . Since C is G �invariant

and 8x 2 G; 8� 2 H , k� (x)� k = k� k the uniqueness of � 0 yields that it is a G �invariant vector.

All we now need to show is that � 0 6= 0 . We b egin by setting :

" :=
p

2 � sup
x 2 G

k� (x)� � � k > 0

Then, as � is of unit norm, we have, for x 2 G :

2 � 2< (h� (x)�; � i ) = k� (x)� � � k2 � (
p

2 � " )2

Hence :

< (h� (x)�; � i ) �
2 � (

p
2 � " )2

2
= "

2
p

2 � "
2

> 0

Thus :

8� 2 C; < (�; � i ) � "
2
p

2 � "
2

> 0

And so 0 =2 C . In particular, � 0 6= 0 so � has a nontrivial invariant vector, as claimed.

Prop erty (T ) can also b e expressed using weak containment, as shown by the following prop o-

sition :

Prop osition 2.1.2

Let G be a topological group.

The fol lowing statements are equivalent :

(i) G has property (T ) ;

(ii) whenever a unitary representation (�; H ) of G weakly contains � 0 , it contains � 0 .

Proof : It is obvious that (i ) implies (ii ) . Conversely, assume that G do esn't have prop erty

(T ) , and set I := f (Q; " ) j Q �� G; " > 0g. Then for every (Q; " ) 2 I , there exists a unitary

representation (� Q;" ; H Q;" ) without nontrivial invariant vector but with a unit (Q; " ) �invariant

vector. Now de�ne the following unitary representation of G :

� :=
M

(Q;" )2 I

� Q;"

Plainly, � 0 / � , but if we consider an invariant vector � for � then 8(Q; " ) 2 I , the co ordinate � Q;"

is a � Q;" �invariant vector, so is trivial. In �ne, � = 0 and so � 0 6� � .

Prop erty (T ) can also b e reformulated using the Fell top ology (cf. de�nition A.2.11) through

the following prop osition, of which the reader will �nd a pro of in [BdlHV08].
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Prop osition 2.1.3

Let G be a topological group.

The fol lowing statements are equivalent :

(i) G has property (T ) ;

(ii) � 0 is isolated in R [ f � 0g for every set R of equivalence classes of unitary representations of

G without invariant vector.

The following lemma will see some use while proving our main theorem in section 2.3 :

Lemma 2.1.1

Let � be a �nitely generated Kazhdan group.

Let S be a �nite generating set of � .

Let K be a compact (i.e �nite) subset of � . We assume that each k 2 K can be written as a word

of length at most ` in the elements of S .

Let (�; H ) be a nontrivial representation of � .

Suppose that for some v 2 H we have :

8s 2 S; k� (s)v � vk < " kvk

Then :

8k 2 K; k� (k)v � vk < `" kvk

Proof : Let k = s1 : : : sn 2 K , with si 2 S ( n � ` ). Then :

k� (k)v � vk =












nY

i =1

� (si )v � v












=












nY

i =1

� (si )v �
nY

i =2

� (si )v +
nY

i =2

� (si )v � v












�











� (s1)

 
nY

i =2

� (si )

!

�
nY

i =2

� (si )v












+












nY

i =2

� (si )v � v












� "kvk +












nY

i =2

� (si )v � v












.

.

.

� n" kvk by induction

� `" kvk

Remark : This lemma shows that if there exists " > 0 such that 8v 2 H ; 9k 2 K such that

k� (k)v � vk > " then 8v 2 H ; 9s 2 S such that k� (s)v � vk > " .

We will also need to de�ne a relative version of prop erty (T ) . The reader may �nd further

details on many applications of this new prop erty in [Jau07].

De�nition 2.1.4 (Relative Prop erty (T ) )

Let G be a topological group.

Let H be a closed subgroup of G .

We say that the pair (G; H ) has relative property (T ) if there exist Q �� G and " > 0 such

that every unitary representation of G which has (Q; " ) �invariant vectors has a nontrivial vector

invariant under H . In that case, we cal l (Q; " ) a Kazhdan pair for (G; H ) .

- More concretely, this means that if (�; H ) is a unitary representation of G which has (Q; " ) �

invariant vectors, then there exists � 2 H n f 0g such that 8h 2 H; � (h)� = � .

+ Of course, if G is Kazhdan then for any closed subgroup H � G , the pair (G; H ) has relative

prop erty (T ) .
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2.2 Prop erty (T) for SLn(Z) (n � 3)

In this section we will follow Shalom's pro of of prop erty (T ) for SLn (Z) (n � 3) (cf. [Sha99]), using

b ounded elementary generation. We will also give a Kazhdan constant for these groups, which we

will use to estimate the "robustness" of the family of expanders shown in section 2.3.

2.2.1 Bounded Elementary Generation of SLn (Z)

De�nition 2.2.1 (Elementary Matrices and Op erations) Let A be a commutative ring with

unit.

(i) We de�ne the elementary matrix E i;j (t) 2 M n (A) , where i; j 2 [n] and t 2 A , as the

matrix whose diagonal coe�cients are ones, whose (i; j ) �th coe�cient is t and whose other

coe�cients are zero.

(ii) We cal l elementary operation on a matrix M 2 M n (A) any left (resp. right) multiplication

of M by an elementary matrix E i;j (t) . Such an operation adds t times the j �th row (resp.

the i �th column) to the i �th one (resp. the j �th one).

Remark : Observe that if any numb er of elementary op erations transforms a matrix A into a

matrix B , then the same numb er of elementary op erations will transform

t A into

t B and A � 1
into

B � 1
.

De�nition 2.2.2 (Bounded Elementary Generation)

We say that SLn (A) has bounded elementary generation if there exists � 2 N�
such that every

matrix in SLn (A) can be written as a product of at most � elementary matrices.

Remark : When SLn (A) has b ounded elementary generation, we denote the minimal such

integer � by � n (A) .

Example : Let K b e a �eld. Then, by applying Gauss's elimination, we show that SLn (K) has

b ounded elementary generation and that � n (K) � n(n � 1).

We now wish to prove that SLn (Z) has b ounded elementary generation. To achieve this, we

will need a few (quite) technical lemmas

2.3

.

Lemma 2.2.1

Let n � 3.

Let A 2 SLn (Z) .

Then A can be transformed, using at most

1
2

(3n2 � n � 10) elementary operations, into a matrix

of the fol lowing form ( a; b; c; d2 Z ) :

0

B
B
B
B
B
@

a b
c d (0)

1

(0)
.

.

.

1

1

C
C
C
C
C
A

Proof : Denote by u1; : : : ; un the co e�cients of A 's n �th row. Since A 2 SLn (Z) , gcd(u1; : : : ;n ) = 1
(indeed, det(A) = 1 is a p olynomial in the co e�cients of A ). We aim to prove that using at most one

elementary op eration we can transform A into a matrix B 2 SLn (Z) whose n �th row's co e�cients

v1 : : : vn satisfy gcd(v1; : : : ; vn � 1) = 1 .

First, if u1; : : : ; un � 1 = 0 then un 2 f� 1; 1g and simply adding the last column to the �rst

yields the desired result. Now assume that there exists i 2 [n � 1] such that ui 6= 0 : by the Chinese

remainder theorem, there exists t 2 Z so that t � 1 mo dulo all primes dividing gcd(u1; : : : ; un � 1)
and t � 0 mo dulo all primes dividing gcd(u2; : : : ; un � 1) but not u1 . Let now p b e a prime divisor

of gcd(u2; : : : ; un � 1) .

2.3

We b eg the reader for forgiveness.
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� If pju1 then t � 1[p] and u1 + tun � un [p]. Moreover, gcd(u1; : : : ; un ) = 1 thus p - u1 + tun .

� If p - u1 the t � 0[p] therefore u1 + tun � u1[p]. In �ne, p - u1 + tun .

We deduce that gcd(u1 + tun ; u2; : : : ; un � 1) = 1 . All we now have to do is to add t times the n �th

column of A to its �rst one, obtaining B (with v1 := u1 + tun ; v2 := u2; : : : ; vn := un ) .

As gcd(v1; : : : ; vn � 1) = 1 , there exist t1; : : : ; tn 2 Z such that :

1 � vn =
n � 1X

i =1

t i vi

This gives us a way, using n� 1 elementary op erations, to transform B into a matrix of the following

form :

C :=

0

B
B
B
B
@

(� )

v1 : : : : : : vn � 1 1

1

C
C
C
C
A

It is now quite simple, using less than n � 1 elementary op erations, to transform C into a matrix

of the following form :

0

B
B
B
B
@

(� )

0 : : : : : : 0 1

1

C
C
C
C
A

By rep eating this pro cess as many times as required (i.e n � 2), we are now able to transform A
into a matrix of the desired form, using at most 1 + 3(n � k) elementary op erations at any given

step k . In �ne, remark that :

n � 2X

k=1

1 + 3(n � k) =
1
2

(3n2 � n � 10)

Hence the desired upp er b ound.

Lemma 2.2.2

Let s 2 N.

Let :

A :=

0

@
a b 0
c d 0
0 0 1

1

A ; B :=

0

@
as b 0
x y 0
0 0 1

1

A 2 SL3(Z)

Then one can transform As
into B using at most 16 elementary operations.

Proof : Consider the matrix L :=
�

a b
c d

�
2 SL2(Z) . Then, by the Cayley � Hamilton theorem,

there exist f; g 2 Z such that L s = f I 2+ gL . Moreover, det(L ) = 1 thus det(f I 2+ gL) = det( L )s = 1 .

Furthermore, notice that :

1 = det( f I 2 + gL) � det(gL)[f ]

� g2 det(L )[f ]

� g2[f ]

Thus f jg2 � 1 = ( g � 1)(g + 1) and so if we set f + := gcd( f; g + 1) , there exist f � ; g1; g2 2 Z such
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that f = f + f �
, g + 1 = f + g1 and g � 1 = f � g2 . Now de�ne the following matrices :

G := E2;3(f � )E3;2(g2) =

0

@
1 0 0
0 g f �

0 g2 1

1

A

H := E3;1(� 1)E1;3(1 � f + )E2;1(� f � )E3;1(g1) =

0

@
� 0 �

� f � 1 0
g 0 f +

1

A

J := GH =

0

@
h 0 �
0 g f
1 � �

1

A ; for some h 2 Z

We now submit the matrix J to the following sequence of elementary op erations ( r; t; v and w
denoting four integers whose exact value is of no use to us) :

J  E1;3(1 � h)J

0

@
1 r �
0 g f
1 � �

1

A

J  JE 1;2(� r )

0

@
1 0 t
0 g f
1 � �

1

A

J  JE 1;3(� t � h)

0

@
1 0 � h
0 g f
1 � �

1

A

J  JE 2;3(a)

0

@
1 0 � h
0 g f + ga
1 v w

1

A

Note that this shows that the matrix S :=

0

@
1 0 � h
0 g f + ga
1 v w

1

A
is a pro duct of 10 elementary matrices.

Furthermore, since L s = f I 2 + gL there exist x0; y0 2 Z such that :

As =

0

@
f + ga bg 0

x0 y0 0
0 0 1

1

A

And, as A mod b is triangular :

As �

0

@
as 0 0
� ds 0
0 0 1

1

A [b]

Therefore, there exists u 2 Z such that f + ag = as + bu and so ( x; y 2 Z ) :

B =

0

@
f + ag � bu b 0

x y 0
0 0 1

1

A

We now submit the matrix B to a treatment comparable with the one J received (also featuring
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four not so interesting integers u1; v1; x1 and y1 ) :

B  BE 2;1(u)S

0

@
f + ag bg 0
x + uy yg 1

1 v w

1

A

B  E3;2(1 � w)B

0

@
f + ag bg 0
x + uy yg 1

u1 v1 1

1

A

B  E2;3(� 1)B

0

@
f + ag bg 0

x + uy � u1 yg � v1 0
u1 v1 1

1

A

B  BE 3;1(� u1)E3;2(� v1)

0

@
f + ag bg 0

x1 y1 0
0 0 1

1

A

Since 1 = det( As) = det( B ) we have (f + ag)y0 � bgx0 = ( f + ag)y1 � bgx1 , which yields :

0 = ( f + ag)(y0 � y1) = bg(x0 � x1)

As gcd(f + ag; bg) = 1 , there exists q 2 Z such that y0 = y1 + qbg and x0 = x1 + q(f + ag) . Thus :

E2;1(q)

0

@
f + ag bg 0

x1 y1 0
0 0 1

1

A =

0

@
f + ag bg 0

x0 y0 0
0 0 1

1

A = As

We have proved that one can transform B into As
using at most 16 elementary op erations, and so

the converse can b e done with the exact same amount of op erations, as claimed.

In order to prove the next lemma, we will need to use the following classical numb er theory

result :

Theorem 2.2.1 (Dirichlet's Prime Numb er Theorem)

Let a; b2 N�
be two relatively prime integers.

Then there are in�nitely many primes p 2 N�
such that p � a[b].

Lemma 2.2.3

Let A :=

0

@
a b 0
c d 0
0 0 1

1

A 2 SL3(Z) , with b � 3[4].

Then A can be written as a product of at most 40 elementary matrices.

Proof : First note that if either c or d is zero then a or b must b e � 1 and our claim b ecomes

obvious. Else, remark that gcd(4d; b) = 1 therefore by Dirichlet's theorem (2.2.1) there exists

a p ositive prime numb er p such that p � b[4d]. Using one elementary op eration, one can thus

transform A into a matrix of the form ( u 2 Z ) :

A0 :=

0

@
u p 0
c d 0
0 0 1

1

A

Observe that p � 3[4] and that since p 6= � 1 then u 6= 0 . The Chinese remainder theorem then

gives us an integer t 2 Z such that t � c[u] and t � � 1[r ] for every prime r such that r jp � 1 and

r - u .
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Let s b e a prime numb er dividing b oth p � 1 and u . Then :

1 = det

0

@
u p 0
c d 0
0 0 1

1

A = ud � pc

� � c[s]

� � t [s]

Thus we have t � � 1[r ] for any prime numb er p dividing p � 1. In particular, p � 1 and t are

relatively prime and since

p � 1
2

is o dd, so do

p � 1
2

and t � 1. Therefore, by Dirichlet's prime

numb er theorem, there exists a p ositive prime s such that q � t[p � 1] and, as

p � 1
2

and t � 1 are

relatively prime, gcd(
p � 1

2
; q � 1) is also one. This implies that there are two integers m; m0 2 Z

such that t = mu + c and q = ( p� 1)t + m0
. Thus q = (( p� 1)m + m0)u+ c hence one can transform,

using one elementary op eration, the matrix A into a matrix of the form ( v 2 Z ) :

H :=

0

@
u p 0
q v 0
0 0 1

1

A

Since

p � 1
2

and q� 1 are relatively prime, there exist k; ` 2 Z such that k
p � 1

2
+ `(q� 1) = 1 and

so by Fermat's theorem vq� 1 � 1[q] and there is an integer � 2 Z such that v(q� 1) ` = 1 + �q . Now

consider :

B := E1;2(� q)E2;1(� � ) =

0

@
v(q� 1) ` � q 0

� � 1 0
0 0 1

1

A

By lemma 2.2.2, we can transform B into the following matrix using less than 16 elementary

op erations : 0

@
v � q 0

� p u 0
0 0 1

1

A = t (H (q� 1) ` )� 1

Thus

t (H (q� 1) ` )� 1
can b e written as a pro duct of at most 18 elementary matrices. Then, by

Fermat's theorem, up� 1 � 1[p] and so uk p � 1
2 � � 1[p].

� If uk p � 1
2 � 1[p], then there exists r 2 Z such that uk p � 1

2 = 1 + rp . Let :

V := E1;2(p)E2;3(r ) =

0

@
uk p � 1

2 p 0
r 1 0
0 0 1

1

A

Then by lemma 2.2.2 one can transform V into H k p � 1
2

using less than 16 elementary op er-

ations, thus H k p � 1
2

can b e written as a pro duct of less than 18 elementary matrices. Note

then that :

H = H k p � 1
2 � ` (q� 1) = H k p � 1

2 H � ` (q� 1)

Hence H can written as a pro duct of less than 18 + 18 = 36 elementary matrices, therefore

A can b e written as a pro duct of less than 38 elementary matrices.

� If uk p � 1
2 � � 1[p], then there exists r 2 Z such that uk p � 1

2 = � 1 + rp . Let :

W := E1;2(2)E2;1(� 1)E2;1(2 � p)E2;1(r ) =

0

@
uk p � 1

2 p 0
pr � r � 1 p � 1 0

0 0 1

1

A

Then by lemma 2.2.2 one can transform W into H k p � 1
2

using less than 16 elementary op-

erations, thus H k p � 1
2

can b e written as a pro duct of less than 20 elementary matrices. As

b efore, we conclude that A can b e written as a pro duct of less than 40 elementary matrices,

which concludes the pro of.
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We are now in p osition to show that SLn (Z) indeed has b ounded generation by putting together

the previous lemmas.

Prop osition 2.2.2

Let n � 3.

Then SLn (Z) is has bounded elementary generation. Moreover :

� n (Z) �
1
2

(3n2 � n) + 36

Proof : Let A 2 SLn (Z) . By lemma 2.2.1, A can b e transformed using less than

1
2

(3n2 � n � 10)

elementary op erations into a matrix B of the form :

B :=

0

B
B
B
B
B
@

a b
c d (0)

1

(0)
.

.

.

1

1

C
C
C
C
C
A

Using one further op erations if necessary, we can assume that b is o dd and so either b � 3[4]
or � b � 3[4]. Thus, by lemma 2.2.3, either B or B � 1

(and so B ) can b e written as a pro d-

uct of less than 40 elementary matrices. Hence A can b e written as a pro duct of less than

1
2

(3n2 � n � 10) + 1 + 40 =
1
2

(3n2 � n) + 36 elementary matrices, as claimed.

2.2.2 Relative Prop erty (T) for (SL2(Z) n Z 2; Z2)

We continue our advance towards showing that SLn (Z) is Kazhdan for n � 3 by studying the pair

(SL2(Z) n Z 2; Z) . But �rst, let us recall a few basic things ab out semidirect pro ducts.

De�nition 2.2.3 (Semidirect Pro duct)

Let A and B be two groups.

Let � : A ! Aut( B ) be a group homomorphism.

We cal l semidirect product (in regard to � ) of A and B the group A � n B which is de�ned as being

A � B endowed with the fol lowing operation :

8(a1; b1); (a2; b2) 2 A � B; (a1; b1):(a2; b2) := ( a1a2; � (a2)(b1)b2)

Now remark that the following mapping is indeed a group homomorphism :

� : SL2(Z) ! Aut( Z2)

M 7! (x 7! Mx )

Hence we can consider the semidirect pro duct SL2(Z) � n Z 2
, which we will simply denote

by SL2(Z) n Z 2
. We will also identify SL2(Z) and Z2

to the corresp onding subgroups of the

aforementioned semidirect pro duct. We now de�ne four sample matrices of SL2(Z) as follows :

U � :=
�

1 � 1
0 1

�
; U+ :=

�
1 1
0 1

�
; L � :=

�
1 0

� 1 1

�
; L + :=

�
1 0
1 1

�

Let us now prove the following lemma :

Lemma 2.2.4 (Burger)

Let � be a probability measure on the Borel sets of 
 := R2 n f 0g.

Then there exist M 2 B (
) and 
 2 f U � ; U+ ; L + ; L � g such that :

j� (
M ) � � (M )j �
1
4

Where 
M := f 
x j x 2 M g as per the usual action of SL2(Z) on R2
.
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A

B

C

D

�
4

bc

Figure 2.1: A partition of 
 .

Proof : Set :

A :=
��

x
y

�
2 
 j 0 � y < x or x < y � 0

�

By considering A and its images B; C and D by the counterclo ckwise rotations of angle

�
4

;
�
2

and

3�
4

we obtain a partition of 
 delimited by the lines " x = y " and " x = � y ", as seen on �gure 2.1.

Plainly, the following equalities then hold :

U+ (A [ B ) = A; U � (C [ D) = D; L + (A [ B ) = B; L � (C [ D) = C

Now supp ose that 8M 2 B (
) ; 8
 2 f U � ; U+ ; L + ; L � g; j� (
M ) � � (M )j <
1
4

. Then if we take

M = A [ B , we obtain :

� (a) = � (A [ B ) � � (B )

= � (A [ B ) � � (L + (A [ B ))

<
1
4

Using similar calculations, we show that � (B ); � (C) and � (D ) are also less that

1
4

. Hence :

1 = � (
) = � (A) + � (B ) + � (C) + � (D ) < 1

The ab ove inequality b eing blatantly incorrect, our lemma isn't

2.4

.

Identify the character group

cZ2
to the torus T2

via the following bijective mapping :

T2 7! cZ2

(z; w) 7! ((m; n) 7! zm wn )

We de�ne the dual action of SL2(Z) on

cZ2
as the inverse transp ose of the usual action of SL2(Z)

on Z2
, i.e (M; x ) 7! t M � 1x . Let us also set :

e+ :=
�

1
0

�
; e� :=

�
� 1
0

�
; f + :=

�
0
1

�
; f � :=

�
0

� 1

�

Note that Q := f U+ ; U � ; L + ; L � ; e+ ; e� ; f + ; f � g is a generating set of SL2(Z) n Z 2
. We are now

�nally able to prove the main result of this subsection, namely that the pair (SL2(Z) n Z 2; Z2) has

relative prop erty (T ) .

2.4

And so is, in fact, correct !
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Prop osition 2.2.3

The pair (SL2(Z) n Z 2; Z2) has relative property (T ) . Indeed,

�
Q;

1
10

�
is a Kazhdan pair for

(SL2(Z) n Z 2; Z2) .

Proof : Let (�; H ) b e a unitary representation of SL2(Z) n Z 2
with a

�
Q;

1
10

�
�invariant vector

but without any Z2
�invariant nontrivial vector. Let E : B(T2) ! L (H ) b e the pro jection valued

measure on

cZ2
asso ciated to the restriction � j Z2 by mean of the SNAG theorem (cf. theorem A.2.4),

so that :

8z 2 Z2; 8�; � 2 H ; h� (z)�; � i =
Z

T2
� (z)dhE(� )�; � i

Also note that :

8
 2 SL2(Z); 8B 2 B (T2); E (
B ) = � (
 � 1)E (B )� (
 ) (2.2)

Set " :=
1
10

and let � 2 H b e a (Q; " ) �invariant unit vector. Consider the following probability

measure on T2
:

� � : B(T2) ! [0; 1]

B 7! hE(B )�; � i

We now identify

cZ2
with

�
�

1
2

;
1
2

� 2

using (x; y) 7! � x;y : (m; n) 7! e2i� (xm + yn )
and note that as

� j Z2 as no nontrivial invariant vector then E(f 0g) = 0 and thus � � (f 0g) = 0 .

Let X :=
�

�
1
4

;
1
4

� 2

: since � is (Q; " ) �invariant and e+ ; e� ; f + ; f � 2 Q then we have :

k� (e� )� � � k2 =
Z

( � 1
2 ; 1

2 ]2

�
�e� 2i�x � 1

�
� d� � (x; y) � "2

k� (f � )� � � k2 =
Z

( � 1
2 ; 1

2 ]2

�
�e� 2i�y � 1

�
� d� � (x; y) � "2

Now remark that if jt j 2
�

1
4

;
1
2

�
then :

je� 2i�t � 1j2 = 2 � 2 cos(2�t ) = 4 sin 2(�t ) � 2

Hence :

"2 �
Z

( x;y ) 2 ( � 1
2 ; 1

2 ]2

j x j� 1
4

4 sin2(�x )

� 2� �

 (

(x; y) 2
�

�
1
2

;
1
2

� 2

j j xj �
1
4

)!

Thus :

� �

 (

(x; y) 2
�

�
1
2

;
1
2

� 2

j j xj �
1
4

)!

�
"2

2

Using similar calculations, we show that :

� �

 (

(x; y) 2
�

�
1
2

;
1
2

� 2

j j yj �
1
4

)!

�
"2

2

Hence :

� � (X ) � 1 � "2

Consider the following probability measure :

� : B(T2) ! [0; 1]

B 7!
� � (B \ X )

� � (X )
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Using equation (2.2), we have that (for 
 2 SL2(Z) and B 2 B (T2) ) :

j� � (
B ) � � � (B )j = jh� (
 � 1E(B )� (
 )�; � i ) � h E(B )�; � ij

� jh � (
 � 1E(B )) � (
 )�; � i � h � (
 � 1E(B )�; � ij + jh� (
 � 1E(B )) �; � i � h E(B )�; � ij

= jh� (
 � 1E(B ))( � (
 )� � � ); � ij + jhE(B )�; (� (
 )� � � )ij

� k � (
 � 1E(B ))( � (
 )� � � )kk� k + kE(B )� kk� (
 )� � � k by Cauchy�Schwarz

� k � (
 � 1E(B ))k� (
 )� � � k + kE(B )kk� (
 )� � � k

� 2"

We also know that 0 � � � (B ) � � � (B \ X ) � "2
hence :

� � (
B \ X ) � � � (B \ X ) = � � (
B \ X ) � � � (
B ) + � � (
B ) � � � (B ) + � � (B ) � � � (B \ X )

� 0 + 2" + "2

This inequality also holds for 
 � 1B , thus :

j� � (
B \ X ) � � � (B \ X )j � 2" + "2

So :

j� (
B ) � � (B )j �
2" + "2

1 � "2 =
21
99

<
1
4

Moreover, since � � (f 0g) = 0 , we can see � as a measure on 
 . Also remark that 8
 2 f U+ ; U � ; L + ; L � g,


X �
�

�
1
2

;
1
2

� 2

and since � (X c) = 0 then 8B 2 B (
) ; j� (
B ) � � (B )j <
1
4

, which contradicts

lemma 2.2.4 and so concludes the pro of.

Corollary 2.2.3.1

Let " > 0.

Let (�; H ) be a unitary representation of SL2(Z) n Z 2
.

Assume that � has a

�
Q;

"
20

�
�invariant unit vector � .

Then � is (Z2; " ) �invariant.

Proof : Let H 0 := f x 2 H j 8 z 2 Z2; � (z)x = xg and H1 := H ?
0 . Since Z2 C SL2(Z) n Z 2

then

H 0 and H 1 are invariant under SL2(Z) n Z 2
. Furthermore, since H 0 is closed, H := H 0 � H 1 thus

9!(� 0; � 1) 2 H 0 � H 1; � = � 0 + � 1 . Now consider 
 2 SL2(Z) n Z 2
and observe that, by Pythagore's

theorem :

k� (
 )� � � k2 = k� (
 )� 0 � � 0k2

| {z }
=0

+ k� (
 )� 1 � � 1k2

Thus :

k� (
 )� 1 � � 1k2 = k� (
 )� � � k2 <
� "

20

� 2

As there is no nontrivial Z2
�invariant vectors in H , then by prop osition 2.2.3 :

9� 2 Q; k� (
 )� 1 � � 1k2 �
�

k� 1k
10

� 2

In �ne :

�
k� 1k
10

� 2

<
� "

20

� 2
i.e k� 1k <

"
2

And so :

8t 2 Z2; k� (t)� � � k = k� (t)� 1 � � 1k � 2k� 1k < "

Therefore � is (Z2; " ) �invariant.
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2.2.3 Finding an Explicit Kazhdan Constant for SLn (Z)

Finally, we take the last steps towards our main result, namely that SLn (Z) has prop erty (T ) for

n � 3. For the remainder of this subsection, we set an integer n � 3.

Lemma 2.2.5

Let i; j 2 [n] such that i 6= j .

Then there exists an injective homomorphism � : SL2(Z) n Z 2 ! SLn (Z) such that :

(i) 8t 2 Z; E i;j (t) 2 � (Z2) ;

(ii) there exists 0 � k � n � 2 such that :

8M 2 SL2(Z); 9N 2 SL2(Z) � (M ) =

0

@
I k (0)

N
(0) I n � 2� k

1

A

Proof : This lemma is proven by induction on n � 3 (an overview of the steps involved can b e

found in [BdlHV08]).

We now show that SLn (Z) has prop erty (T ) for n � 3 and compute an explicit Kazhdan

constant for this group, using its b ounded elementary generation.

Prop osition 2.2.4

SLn (Z) has property (T ) (recal l that n � 3).

Indeed, if we set Qn := f E i;j (1) j i; j 2 [n]; i 6= j g and � n := � n (Z) then

�
Qn ;

1
20� n

�
is a Kazhdan

pair for SLn (Z) .

Proof : Let Tn := Qn [ Q� 1
n and recall that it su�ces to show that

�
Tn ;

1
20� n

�
is a Kazhdan

pair for SLn (Z) . Let (�; H ) b e a unitary representation of SLn (Z) with a

�
Tn ;

1
20� n

�
�invariant

unit vector � and let 
 b e any elementary matrix in SLn (Z) . Then, by lemma 2.2.5, there exists

� : SL2(Z) n Z 2 ,! SLn (Z) such that 
 2 � (Z2) and � (Q) = Tn \ � (SL2(Z) n Z 2) . By corollary

2.2.3.1, � is

�
� (Z2);

1
� n

�
�invariant and so in particular :

k� (
 )� � � k <
1
� n

Assume now that 
 is any matrix in SLn (Z) . Then, as SLn (Z) has b ounded elementary gener-

ation, there exists an integer N � � n and �nitely many elementary matrices 
 1; : : : ; 
 N 2 SLn (Z)
so that :


 =
NY

i =1


 i

Therefore :

k� (
 )� � � k �
N � 1X

i =0













�

0

@
N � iY

j =1


 j

1

A � � �

0

@
N � i � 1Y

j =1


 j

1

A �














=
NX

j =1

k� (
 j )� � � k

�
N
� n

� 1

<
p

2

Hence � is (SLn (Z);
p

2)�invariant and so by prop osition 2.1.1, � has nontrivial invariant vectors,

and so the prop osition is proven.
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2.3 Main Theorem and Construction

In this last section, we �nally construct an actual family of expanders, using prop erty (T ) on

SLn (Z) ( n � 3). We �rst prove a (relatively) generic theorem linking some quotients of Kazhdan

groups and expander families b efore applying it to the aforementioned sp ecial linear groups and

thus obtaining an explicit family of expanders.

Theorem 2.3.1

Let � be a �nitely generated Kazhdan group.

Let L be a family of �nite index normal subgroups of � .

Let S be a �nite symmetric generating set of � .

Then (C(� =N; S))N 2L is a family of (j� =Nj; jSj; c) �expanders, for some c > 0.

Proof : Let N 2 L . We consider the �nite group V := � =N and the separable Hilb ert space

H := L 2(� =N) of the functions f : � =N ! C endowed with the following norm :

k:k : f 7!
s X

x 2 V

jf (x)j2

Let H0 := f f 2 H j
P

x 2 V f (x) = 0 g. Then � acts on H as follows :

8
 2 � ; 
:f = ( x 7! f (x
 ))

This action can b e seen as a representation � : � ! U (H ) , where 8
 2 � ; 8f 2 H we de-

�ne � (
 )f := 
:f . Furthermore, as a � �mo dule, H = H0 � H ?
0 . Here, H ?

0 = C� V , where

� V : x 7! 1 2 H is the characteristic function of V .

The action of � on V is transitive, hence the only � �invariant functions of H are the constants

(i.e the elements of C� V ) (in particular, since � 0 is indeed � �invariant, � 0 =2 H0 ). This transitivity

also means that we can consider the representation (H0; � ) . Since only the constants in H are

� �invariant, H0 do esn't contain any such function, i.e the representation (H0; � ) do esn't have any

nontrivial invariant vector. Thus, since � is Kazhdan, this representation do esn't have any almost

invariant vector, i.e there exists " > 0 not dep endent on N such that (cf. lemma 2.1.1) :

8f 2 H0; 9
 2 S; k
:f � f k > " kf k (2.3)

Let A � V and let B = Ac
. We denote a := jAj and b := jB j = n � a. We then de�ne the following

mapping on V :

f : x 7!
�

b if x 2 A
� a if x 2 B

Plainly f 2 H0 and kf k2 = ab2 + ba2 = nab, while (for any 
 2 � ) :

k
:f � f k2 =
X

x 2 V

jf (x
 ) � f (x)j2

=
X

x 2 A

jf (x
 ) � bj2 +
X

x 2 B

jf (x
 ) + aj2

Therefore, if we consider E 
 (A; B ) := f x 2 V j x 2 A; x
 2 B or x 2 B; x
 2 Ag then :

k
:f � f k2 = ( a + b)2jE 
 (A; B )j = n2jE 
 (A; B )j

Since jE (A; B )j �
1
2

jE 
 (A; B )j , then :

j@Aj �
1
2

jE 
 (A; B )j =
k
:f � f k2

2n2

Thus (using equation 2.3):

9
 2 S; j@Aj �
"kf k
2n2

= "
ab
2n

=
"
2

�
1 �

jAj
n

�
jAj

Hence the result with c �
"
2

.
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The Margulis Construction : Let � n := SLn (Z) , with n � 3 so that it has prop erty (T ) .

We know that this group is generated by R := f An ; Bn g, where :

An :=

0

B
B
B
B
B
B
B
@

1 1 0 : : : 0

0 1 0
.

.

.

0
.

.

. 1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
0 : : : 0 0 1

1

C
C
C
C
C
C
C
A

and Bn :=

0

B
B
B
B
B
B
B
@

0 1 0 : : : 0
.

.

. 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

0
.

.

.

.

.

. 1
(� 1)n � 1 0 : : : : : : 0

1

C
C
C
C
C
C
C
A

To apply theorem 2.3.1 we need a symmetric generating set S , therefore we set S := f An ; Bn ; Cn ; Dn g,

where :

Cn := A � 1
n =

0

B
B
B
B
B
B
B
@

1 � 1 0 : : : 0

0 1 0
.

.

.

0
.

.

. 1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
0 : : : 0 0 1

1

C
C
C
C
C
C
C
A

and Dn := B � 1
n =

0

B
B
B
B
B
B
@

0 : : : : : : 0 (� 1)n � 1

0 1 0 : : : 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
0 : : : : : : 0 1

1

C
C
C
C
C
C
A

Let p b e a prime numb er. We denote SLn (p) := SLn (Fp) and � n (p) := ker( SLn (Z) ! SLn (p))C� n .

These subgroups have �nite index since � n =� n (p) �= SLn (p) , thus, by theorem 2.3.1, we have that

(C(SLn (p); Sn ))p prime

is a family of expander graphs, which we will call Margulis graphs.

How "e�ective" is this family of expanders ? Well, we know by theorem 2.3.1 that these graphs

are 4�regulars and that their expansion constant is greater or equal to

"
2

, where " can b e any

Kazhdan constant for the group SLn (Z) . But we also know by prop osition 2.2.4 that

1
20� n (Z)

is

a Kazhdan constant for this group, hence the Margulis graphs are expanders for a constant c such

that :

c �
1

40� n (Z)

Since by prop osition 2.2.2 we know that � n (Z) �
1
2

(3n2 � n) + 36 , we have that :

c �
1

20(3n2 � n) + 1440

In particular :

c = 

�

1
n2

�

To give the reader some sort of a graphic illustration of these graphs, we computed the Cayley

graph of SL3(2) (corresp onding to the �rst Margulis graph for n = 3 ), using a python whose source

co de can b e found in app endix B.

Each vertex on Fig. 2.2 represents one the 168 matrices in SL3(2) , in the order they are

computed by our python\verb script. Also remark that for this particular graph we have the

following lower b ound

2.5

on c :

c �
1

1920
Therefore, for any set S of vertices in our graph, we have :

j@Sj
jSj

�
1

1920

�
1 �

jSj
3

�
jSj

Finally, remark that these b ounds hold for any of the " n = 3 " Margulis graphs.

2.5

Which actually isn't that great . . .
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Figure 2.2: First Margulis Graph for n = 3
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App endix A

Prerequisites

This app endix sums up a few generic results on graphs (A.1), group representations (A.2) and `p

spaces (A.3). We tried to keep these as compact as we could, hence the utter lack of anything

resembling a pro of b eyond this p oint

1.1

.

A.1 Graphs

In this section we recall some generic notions ab out graphs. Since such elements have absolutely

no use for expanders, we forbid graphs to have multiple edges and/or self�lo ops. Simple as that.

All graphs considered are also assumed to b e nonempty.

Recommended references : [Die05], [Coh89].

A.1.1 Basic Notions on Graphs

De�nition A.1.1 (Graph)

We cal l (undirected) graph an ordered pair of sets G := ( V (G); E(G)) , where E(G) � V (G) � V (G)
such that :

8(v; w) 2 E(G); (w; v) 2 E(G)

The elements of E(G) are cal led the edges of the graph G and those of V (G) its vertices.

If no ambiguity is to b e feared, we will denote E(G) (resp ectively V (G) ) simply by E (resp.

V ). We also de�ne two mappings � : E ! V and : : E ! E such that 8e 2 E; e 6= e and e = e.

We then de�ne another mapping � : E ! V by e� := e� . Given one edge e, we call e� the

b eginning of e, e� its ending and e its inverse.

De�nition A.1.2 ( d�Regular Graph)

A graph is cal led d�regular if each of its vertices has exactly d incident edges.

- For the remainder of this section, let G = ( V; E) b e a nonempty graph.

De�nition A.1.3 (Path, Lo op)

We cal l path in G any �nite sequence (e1; : : : ; en ) (with n � 1) of edges such that 8i 2 [n� 1]; ei � = ei +1 � .

We cal l vertices of such a path the elements of the set f �e 1g [ : : : [ f �e n g [ f en � g, and de�ne its

beginning (resp. end) to be e1� (resp. en � ).

A path is cal led a loop if e1� = en � .

Remark : The integer `(e) := n is called length of the path e. It can sometimes b e convenient

to allow paths of length zero, which we de�ne as a single vertex.

De�nition A.1.4 (Simple Path, Circuit)

Let (e1; : : : ; en ) be a path in G .

1.1

You have b een warned . . .

41
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(i) (e1; : : : ; en ) is cal led a simple path if 8i 6= j; �e i 6= �e j and �e i 6= en � .

(ii) (e1; : : : ; en ) is cal led a circuit if it is a loop, if 8i 6= j; �e i 6= �e j and if it is not of the form

(e;e) .

De�nition A.1.5 (Reducible Path)

A path (e1; : : : ; en ) on G is cal led reducible if there exists 1 � i � n such that ei +1 = ei . Else, it is

cal led irreducible.

+ Plainly, if two vertices can b e joined by a path, they can b e joined by an irreducible path.

De�nition A.1.6 (Subgraph)

We cal l subgraph of G any ordered pair of sets (V1; E1) such that :

(i) E1 � E ;

(ii) V1 � V ;

(iii) 8e 2 E; e 2 E1 and e� 2 V1 .

Note that the two conditions in (iii ) imply that 8e 2 E1; e� 2 V1 .

Prop osition A.1.1

The intersection (resp. reunion) of any family of subgraphs of G is itself a subgraph of G .

De�nition A.1.7 (Full Subgraph)

Let V1 � V .

Then we de�ne the ful l subgraph on V1 as the subgraph

1.2 (V1; E1) of G , where we de�ne E1 as the

fol lowing set :

E1 := f e 2 E j e�; e� 2 V1g

De�nition A.1.8 (Spanning Subgraph)

A subgraph of G is cal led spanning if its vertex set is equal to V .

We then de�ne the following equivalence relation on V : two vertices v and w are called

connected (denoted v � w ) if there exists a path (e1; : : : ; en ) on G such that e1� = v and en � = w .

Note that for � to b e an equivalence relation we need to allow paths of length zero so that each

vertex is connected to itself.

De�nition A.1.9 (Connected Graph)

A graph is said to be connected if any two of its vertices are connected.

- We also call connected comp onents of a graph its full subgraphs whose vertex sets are the

equivalent classes for � .

We now use these notions to endow the connected comp onents of our graph with a metric.

Prop osition A.1.2 (Graph Metric)

Let H = ( V 0; E 0) a connected component of G .

Then we de�ne a distance dH on E 0
via the fol lowing :

dH : (x; y) 7!
�

0 if x = y
minf `(e) j e simple path linking x and y g else

De�nition A.1.10 (Degree)

Let v 2 V .

(i) We cal l degree (or valency) of v the natural number deg(v) := jE (f vg)j .

(ii) We cal l minimal degree of G the fol lowing quantity :

� (G) := min
v2 V

deg(v)

1.2

Plainly, such a pair is indeed a subgraph of G .
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A.1.2 Matchings

De�nition A.1.11 (Matching)

Let G = ( V; E) be a graph.

We cal l matching in E any subgraph M of G whose edges are independent, i.e none of its edges

have a common end. Any vertex incident to an edge of M is cal led matched (by M ), others are

cal led unmatched (by M ).

Example : On �g. A.1, the red edges de�ne a matching on the example graph. Note that one

vertex ( 5) is left out of the matching.

b

b

b

b

b

b

b

1

2

3

4

6

5

7

Figure A.1: Example graph

De�nition A.1.12 (Matching of a Vertex Set)

Let G = ( V; E) be a graph.

Let U � V .

Let M be a matching on G .

We say that M is matching of U if every vertex in U is incident to at least an edge of M (and so

exactly to one of them, since the edges in M are independent).

Example : On the example graph of �g. A.1, the red edges form a matching of f 1; 2; 3; 4; 6; 7g
(and so of any of its subset). We can turn into a matching of the whole graph by removing the

(2; 3) edge and adding (2; 4) and (3; 5).

De�nition A.1.13 (Perfect Matching)

Any 1�regular spanning matching is cal led a perfect matching.

+ Note that this means that a p erfect matching is exactly a matching of the whole vertex set.

De�nition A.1.14 (Hamilton Cycle)

Let G = ( V; E) be a graph with more than 3 vertices.

We cal l Hamilton cycle on G any �nite sequence (v0; e0; : : : ; ek � 1; vk ) such that :

(i) 80 � i � k , vi 2 V ;

(ii) 80 � i � k � 1, ei 2 E and ei = ( vi ; vi +1 ) ;

(iii) v0 = vk ;

(iv) the sequence (v0; : : : ; vk ) contains every vertex in V exactly once.

- It is easy to see that a graph which has a Hamilton cycle and an even numb er of vertices has

a p erfect matching : indeed, one can explicitly construct said matching by taking every even�

numb ered edge in the cycle.
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b
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Figure A.2: Example graph

Example : On the example graph of �g. A.2 the orange and red edges de�ne a Hamilton cycle.

If you keep only the orange

1.3

edges, you obtain a p erfect matching.

The following theorem can thus b e used to show that a graph has a p erfect matching.

Theorem A.1.3 (Dirac)

Every graph with more than n = 3 vertices and minimal degree above

n
2

has a Hamilton cycle.

A.1.3 Cayley Graphs

De�nition A.1.15 (Cayley Graph)

Let H be a group.

Let S � H (note that S need not be a subgroup of H ).

We cal l Cayley graph of S on H the graph C(H; S) = ( V; E) , where :

(i) the vertex set V is equal to H ;

(ii) (g; h) 2 E , 9 s 2 S; g:s= h .

Remark : Plainly, if S is symmetric then the Cayley graph C(H; S) is jSj �regular.

Prop osition A.1.4

Let H be a group.

Let S � H .

Then :

S generates H
,

C(H; S) is connected

A.2 Notions on Representation Theory

We now pro ceed to state a few results on group representations, which will mostly see use in chap-

ter 2.

Recommended reference : [BdlHV08].

1.3

Which are also sp orting tiny arrowheads, in case you have printed this do cument in black and white.
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A.2.1 Unitary Representations

For the remainder of this subsection, we consider a top ological group G .

De�nition A.2.1 (Unitary Representation)

A unitary representation of the group G is a pair (�; H ) , where :

(i) H is a Hilbert space ;

(ii) � : G ! U (H) is a group homomorphism such that for every � 2 H , the fol lowing mapping

is continuous :

G ! H

g 7! � (g)�

We cal l dimension of the representation (�; H ) the dimension of the linear space H .

Note that since the choice of H is in a way "contained" in the mapping � , we will sometimes denote

a representation (�; H ) simply by � .

Example : Supp ose that G is �nitely generated and let V b e the vector space of all mappings

f : G ! C (which is Hilb ert since it is of �nite dimension). Now consider the following mapping :

8f 2 V; 8x; h 2 G; (rG (h)f )(x) := f (xh)

Then (rG ; V ) is a representation of G , known as the regular representation of the aforementioned

group.

Prop osition A.2.1 (Direct Sum of Unitary Representations)

Let (( � i ; H i )) i 2 I be a family of unitary representations of G .

Then the pair (
L

i 2 I � i ;
L

i 2 I H i ) is a unitary representation of G , cal led direct sum of (( � i ; H i )) i 2 I ,

where :

8g 2 G; 8� = ( � i ) i 2 I 2
M

i 2 I

H i ;

 
M

i 2 I

� i

!

(g)� := ( � i (g)� i ) i 2 I

De�nition A.2.2 (Matrix Co e�cients)

Let (�; H ) be a unitary representation of G . We cal l matrix coe�cients of � the fol lowing mappings

(where �; � 2 H ) :

G ! C

g 7! h� (g)�; � i

Example : The matrix co e�cients of the regular representation (rG ; V ) of a �nitely generated

group G are the mappings ( f; g 2 V ) :

G ! C

h 7!
Z

G
f (xh)g(x)dx

De�nition A.2.3 (Representation Invariants)

Let (�; H ) be a representation of G .

(i) A vector x 2 H n f 0g is cal led an invariant vector of (�; H ) if :

8g 2 G; � (g)x = x

(ii) A subset (resp. linear subspace) V of H is cal led an invariant subset (resp. subspace) of

(�; H ) if :

8g 2 G; 8v 2 V; � (g)v 2 V (i.e � (g)V = V )
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Remark :

� When no misunderstanding is deemed p ossible, we will call such invariants G �invariants,

without sp ecifying the representation � involved.

� Note that an invariant subset do esn't necessarily contain any invariant vector. For example,

the orthogonal subspace of the set of constant functions on G is an invariant subspace for

the regular representation, whose only invariant vectors are the constant mappings on G .

Prop osition A.2.2

Let (�; H ) be a unitary representation of G .

Let K � H be a G �invariant subset of H .

Then K ?
is G �invariant.

De�nition A.2.4 (Irreducible Representation)

A representation is cal led irreducible if it has no nontrivial invariant subspace.

De�nition A.2.5 (Equivalent Representations)

Let (�; V ) and (�; H ) be two unitary representations of G .

We cal l these representations isomorphic (or equivalents) if there is a continuous isomorphism of

vector spaces T : V ! H such that :

8g 2 G; T � (g) = � (g)T

De�nition A.2.6 (Dual of a Top ological Group)

We cal l dual of the group G the set

bG of al l equivalent classes of unitary representations of G .

Prop osition A.2.3

Let (�; H ) be a unitary representation of G .

Then there is an orthogonal decomposition of H into a direct sum of invariant subspaces H i such

that for every index i the representation (�; H i ) is irreducible. Moreover, this decomposition is

unique up to isomorphism.

De�nition A.2.7 (Subrepresentation)

Let (�; H ) be a unitary representation of G .

Let K be a closed G �invariant subset of H .

We cal l subrepresentation of � associated with K the representation (� K ; K ) , where � K := � j K .

De�nition A.2.8 (Containment)

Let (�; H ) and (�; V ) be two unitary representations of G .

We say that � is (strongly) contained in � , which we denote by � � � , if � is equivalent to any

subrepresentation of � .

Remark : Plainly, a subrepresentation of a representation � is contained in � .

We will also need the notion of weak containment in order to study Kazhdan's prop erty (T ) :

De�nition A.2.9 (Weak Containment)

Let (�; H ) and (�; V ) be two unitary representations of G .

Then we say that � is weakly contained in � , denoted � / � , if every matrix coe�cient of � is a

limit, uniformly on compact sets of G , of matrix coe�cients of � .

Remark : Note that strong containment do esn't imply weak containment. The existence (to a

certain extent) of such prop erties is indeed one way to characterise Kazhdan's prop erty (T ) .

A.2.2 Pro jection Valued Measures

The aim of this subsection is to intro duce the SNAG theorem, which will b e needed to show that

SLn (Z) has prop erty (T ) for n � 3.
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De�nition A.2.10 (Pro jection Valued Measure)

Let X be a topological space.

Let H be a Hilbert space.

We cal l projection valued measure on X any mapping E : B(X ) ! P (H) such that :

(i) E(; ) = 0 ;

(ii) E(H) = id H ;

(iii) 8A; B 2 B (X ) , E(A \ B ) = E(A)E(B ) ;

(iv) if (Bn )n 2 B (X )N
is a sequence of pairwise disjoints Borel sets, we have that :

E

 
[

n 2 N

Bn

!

=
1X

n =0

E(Bn )

Let us consider a top ological group G . We wish to endow its dual

bG with a nice top ology in

order to consider pro jection valued measures on it.

De�nition A.2.11 (Fell Top ology)

Let (�; H ) 2 bG .

We de�ne open neighbourhoods of (�; H ) as fol lows : 8K �� G; 8" > 0; 8v 2 H of unit norm, let

:

W (K; "; v ) := f (L; � ) 2 bG j 9w 2 L of unit norm such that 8g 2 K; jhv; � (g)vi � h w; � (g)wij < " g

This determines a topology on

bG , cal led the Fel l topology.

De�nition A.2.12

Let X be a topological space.

Let H be a Hilbert space.

Let E : B(X ) ! P (H) be a projection valued measure on X .

We say that E is regular if :

8� 2 H ; 8B 2 B (X ); hE(B )�; � i = supfhE(C)�; � i j C � B; C closed g

= inf fhE(O)�; � i j B � O; O open g

We now state the following theorem

1.4

, which we use to show that SLn (Z) has prop erty (T )
for n � 3 :

Theorem A.2.4 (Stone � Naimark � Ambrose � Go dement)

Let (�; H ) be a unitary representation of a local ly compact Abelian group G .

Then there exists a unique regular projection valued measure E � : B( bG) ! P (H) such that :

8x 2 G; � (x) =
Z

bG
bx(x)dE� (bx)

A.3 `p Metrics

In this app endix we recall a few facts ab out `p spaces and the asso ciated metrics.

Recommended reference : [Pis89].

De�nition A.3.1 ( `n
p Space)

Let p > 0.

Let n � 1.

We cal l `n
p space the normed vector space (Rn ; k:kp) , where :

8x 2 Rn ; kxkp := p

vu
u
t

nX

i =1

jx i jp

1.4

Sometimes dubb ed the "SNAG theorem", mostly in order to spare trees.
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Remark :

� We will sometimes sp eak of " `p spaces". In that case, the dimension is omitted for an

increase in generality

1.5

. Note however that this do esn't allow the aforementioned space to

b e in�nitely dimensioned.

� When no ambiguity is deemed p ossible

1.6

, we will denote k:kp simply by k:k .

De�nition A.3.2 ( `p Metric)

Let (X = f x1; : : : ; xN g; d) be a �nite metric space.

We say that d is an `p metric if there exists a subset S = f s1; : : : ; sN g of an `p space such that :

8i; j 2 [N ]; d(x i ; x j ) = ksi � sj k

Pretty much the only result we will need on `p metrics is the following :

Prop osition A.3.1

Every `2 metric is an `1 metric.

1.5

Hop efully without any increase in the reader's confusion . . .

1.6

That is, almost everywhere in this rep ort.



App endix B

Source Co des

The following scripts make no attempt either at robustness nor at optimization (see the matrix

pro duct for a prime example of our leniency), so we kindly ask the reader to keep this in mind

while browsing this app endix. We only used these as an easy way to get a graphic representation

of low�dimensional Margulis graphs

B.1 group.py

This �rst python script merely computes "any" group of (very) small cardinality through a very

simple algorithm :

� start with a list of generators ;

� add to the list any pro duct of these two which isn't already in ;

� rep eat the previous step with the up dated list as long as you �nd something to add.

Furthermore, this script will also write down all matrices in SL3(2) in a text �le, for the sake of

convenience.

# ��� c o d i n g : u t f � 8 ���
f r o m c o p y i m p o r t �

d e f g r o u p ( L , f ) :

# B r u t e f o r c e a l g o r i t h m t o c o m p u t e

#a ( s m a l l ! ) g r o u p u s i n g a g e n e r a t i n g s u b s e t

e n d = 0

w h i l e ( e n d == 0 ) :

e n d = 1

f o r x i n L :

f o r y i n L :

i f n o t ( f ( x , y ) i n L ) :

L = L + [ f ( x , y ) ]

e n d = 0

r e t u r n L

#A m a t r i x i s t h e l i s t o f i t s r o w s

d e f p r o d _ m a t ( A , B ) : #M a t r i x p r o d u c t ( mod 2 )

R=d e e p c o p y ( A )

f o r i i n r a n g e ( l e n ( A ) ) :

#We a s s u m e A a n d B t o b e

#s q u a r e m a t r i c e s o f s a m e d i m e n s i o n

f o r j i n r a n g e ( l e n ( A ) ) :

S = 0

f o r k i n r a n g e ( l e n ( A ) ) :

49
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S = S + A [ i ] [ k ] � B [ k ] [ j ]

R [ i ] [ j ] = S % 2

r e t u r n R

d e f p r i n t _ m a t r i x (M) :

# P r i n t a m a t r i x

f o r i i n r a n g e ( l e n (M) ) :

p r i n t M [ i ]

p r i n t ' '

d e f e x i s t ( f ) :

#C h e c k i f f i l e f e x i s t s i n t h e w o r k i n g d i r e c t o r y

t r y :

f o p = f i l e ( f , " r " )

f o p . c l o s e ( )

r e t u r n T r u e

e x c e p t :

r e t u r n F a l s e

d e f i d _ i n _ l i s t ( A , L ) :

#C h e c k i f A i s i n L a n d r e t u r n i t s i n d e x

r = � 1

f o r i i n r a n g e ( l e n ( L ) ) :

i f L [ i ] == A :

r = i

r e t u r n r ;

d e f w r i t e _ 3 ( ) :

#C o m p u t e a n d w r i t e t h e l i s t o f t h e m a t r i c e s

# i n SL_3 ( 2 ) i n g r o u p 3 . t x t

A = [ [ 1 , 1 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ]

B = [ [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] , [ 1 , 0 , 0 ] ]

L = [ A , B ]

o u t F i l e N a m e = ' g r o u p 3 . t x t '

i f e x i s t ( o u t F i l e N a m e ) :

p r i n t ' ERROR'

e l s e :

R = g r o u p ( L , p r o d _ m a t )

o u t F i l e = f i l e ( o u t F i l e N a m e , ' w ' )

f o r A i n R :

f o r i i n r a n g e ( l e n ( A ) ) :

f o r j i n r a n g e ( l e n ( A ) ) :

o u t F i l e . w r i t e ( s t r ( A [ i ] [ j ] ) )

o u t F i l e . w r i t e ( ' ' )

o u t F i l e . w r i t e ( ' \ n ' )

o u t F i l e . w r i t e ( ' \ n ' )

o u t F i l e . c l o s e

i f __name__=='__main__ ' :

w r i t e _ 3 ( )

B.2 graph.py

This script draws the �rst Margulis graph for n = 3 using the pygraph utility. Note that an

attempt was made to compute this graph for n = 4 , with very little success due to the crude

nature of our group computing utility.
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# ��� c o d i n g : u t f � 8 ���

i m p o r t s y s

s y s . p a t h . a p p e n d ( ' . ' )

s y s . p a t h . a p p e n d ( ' / u s r / l i b / p y s h a r e d / p y t h o n 2 . 6 ' )

f r o m g r o u p i m p o r t �
i m p o r t g v

f r o m p y g r a p h i m p o r t �
f r o m p y g r a p h . r e a d w r i t e . d o t i m p o r t w r i t e

d e f d r a w _ 3 ( ) :

#Draw t h e f i r s t M a r g u l i s g r a p h f o r n = 3

G = g r a p h ( )

A = [ [ 1 , 1 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] #A^ 2 mod 2 = I d

B = [ [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] , [ 1 , 0 , 0 ] ]

D = [ [ 0 , 0 , 1 ] , [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] ]

L = [ A , B ]

R = g r o u p ( L , p r o d _ m a t )

N = r a n g e ( l e n ( R ) )

G . a d d _ n o d e s ( N )

f o r i i n N :

f o r x i n [ A , B , D ] :

G . a d d _ e d g e ( i , i d _ i n _ l i s t ( p r o d _ m a t ( R [ i ] , x ) , R ) )

d o t = w r i t e ( G )

g v v = g v . r e a d s t r i n g ( d o t )

g v . l a y o u t ( g v v , ' d o t ' )

g v . r e n d e r ( g v v , ' p n g ' , ' g r a p h 3 . p n g ' )

d e f d r a w _ 4 ( ) :

#Draw t h e f i r s t M a r g u l i s g r a p h f o r n = 4 ( n o t u s a b l e s i n c e " g r o u p "

#i s n ' t o p t i m i z e d e n o u g h ) . B e s i d e s , t h e p i c t u r e w o u l d b e a m e s s .

G = g r a p h ( )

A = [ [ 1 , 1 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1 ] ] #A^ 2 mod 2 = I d

B = [ [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1 ] , [ 1 , 0 , 0 , 0 ] ]

D = [ [ 0 , 0 , 0 , 1 ] , [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] ]

L = [ A , B ]

R = g r o u p ( L , p r o d _ m a t )

N = r a n g e ( l e n ( R ) )

G . a d d _ n o d e s ( N )

f o r i i n N :

f o r x i n [ A , B , D ] :

G . a d d _ e d g e ( i , i d _ i n _ l i s t ( p r o d _ m a t ( R [ i ] , x ) , R ) )

d o t = w r i t e ( G )

g v v = g v . r e a d s t r i n g ( d o t )

g v . l a y o u t ( g v v , ' d o t ' )

g v . r e n d e r ( g v v , ' p n g ' , ' g r a p h 4 . p n g ' )

i f __name__=='__main__ ' :

d r a w _ 3 ( )

#d r a w _ 4 ( ) # C a r d i n a l i t y o f ~ 2 0 0 0 0 i s t o o much f o r " g r o u p " t o h a n d l e
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